南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (3): 163-171.doi: 10.12302/j.issn.1000-2006.202403012
收稿日期:
2024-03-07
接受日期:
2024-04-24
出版日期:
2025-05-30
发布日期:
2025-05-27
通讯作者:
*李楠(linan1550@163.com),工程师。作者简介:
侯瑄珠(attitude36@163.com)。
基金资助:
Received:
2024-03-07
Accepted:
2024-04-24
Online:
2025-05-30
Published:
2025-05-27
摘要:
【目的】了解植物枝叶性状间的权衡关系,为进一步揭示植物在不同环境胁迫下采取的资源分配策略提供参考。【方法】以原始阔叶红松(Pinus koraiensis)林中的优势或常见的12种阔叶植物为研究对象,采用单因素方差分析或非参数秩和检验对不同生活型植物或物种间的性状进行差异性分析,以标准化主轴估计(standardized major axis estimation,SMA)对枝叶性状间相关关系进行研究。【结果】不同生活型阔叶植物的枝叶性状有相似的变异趋势,其中枝横截面积和出叶强度变异程度均高于30%,枝干质量变异高于20%,而单叶干质量、总叶面积和单叶面积变异均低于15%;乔木的单叶面积、总叶面积和单叶干质量均显著高于灌木;乔木枝横截面积与单叶面积之间为正异速生长关系,灌木为正等速生长关系;乔木和灌木枝横截面积与总叶面积之间均为正等速生长关系,仅部分物种存在正异速生长关系;乔木和灌木出叶强度与单叶面积、单叶干质量之间为负异速生长关系,仅部分乔木物种呈负等速生长关系。【结论】不同生活型植物间枝叶性状以异速生长关系为主,异速生长更有利于植物生存策略的调节,不同生活型阔叶植物枝叶性状的权衡模式取决于生长方式。
中图分类号:
侯瑄珠,李楠. 原始阔叶红松林中不同生活型阔叶植物枝叶性状的变异及权衡[J]. 南京林业大学学报(自然科学版), 2025, 49(3): 163-171.
HOU Xuanzhu, LI Nan. Variation and trade-offs of twig and leaf traits among different broadleaved life form plants in the primitive broadleaved-Korean pine forest[J].Journal of Nanjing Forestry University (Natural Science Edition), 2025, 49(3): 163-171.DOI: 10.12302/j.issn.1000-2006.202403012.
图1
中国东北地区不同生活型阔叶植物枝叶性状的变异及种间差异 不同大写字母表示不同生活型水平上枝叶性状间存在显著差异,不同小写字母表示同一生活型不同树种枝叶性状间存在显著差异(P<0.05)。百分数表示不同生活型水平上枝叶性状的变异系数。Different capital letters represent significant differences in twig-leaf traits among different life forms. Different lowercase letters represent significant differences in twig-leaf traits among different species of the same life form (P<0.05). The percentages represent the coefficient of variation of twig-leaf traits among different life forms. S1.毛榛子Corylus mandshurica;S2.东北山梅花Philadelphus schrenkii;S3.光萼溲疏Deutzia gladata;S4.黄花忍冬Lonicera chrysantha;S5.刺五加Acanthopanax senticosus;S6.瘤枝卫矛Euonymus pauciflorus;T1.白桦Betula platyphylla;T2.枫桦B. costata;T3.水曲柳Fraxinus mandshurica;T4.裂叶榆Ulmus laciniata;T5.紫椴Tilia amurensis;T6.色木槭Acer mono。 下同。The same below."
表1
中国东北地区不同生活型阔叶植物的枝叶大小关系性状中的标准化主轴估计"
指标(y-x) index | 生活型/物种 life form/species | 样本 sample | 决定系数 R2 | P | 斜率(95%置信区间) slope(95% confidence interval,95% CI) |
---|---|---|---|---|---|
单叶面积-枝横截面积 individual leaf area-twig cross-sectional area | 乔木 | 99 | 0.088 | 0.003 | 0.520(0.492,0.629) |
灌木 | 63 | 0.091 | 0.017 | 0.825(0.648,1.051) | |
T1 | 18 | 0.351 | 0.010 | 0.868(0.573,1.315) | |
T2 | 18 | 0.226 | 0.046 | 0.505(0.322,0.792) | |
T5 | 17 | 0.527 | 0.001 | 0.471(0.325,0.682) | |
S4 | 9 | 0.746 | 0.003 | 0.498(0.378,0.631) | |
总叶面积-枝横截面积 total leaf area-twig cross- sectional area | 乔木 | 99 | 0.788 | <0.001 | 1.029(0.948,1.118) |
灌木 | 63 | 0.469 | <0.001 | 1.029(0.948,1.118) | |
T1 | 18 | 0.481 | 0.001 | 1.051(0.724,1.526) | |
T2 | 18 | 0.487 | 0.001 | 0.726(0.501,1.052) | |
T5 | 17 | 0.551 | 0.001 | 0.490(0.342,0.703) | |
T6 | 17 | 0.351 | 0.012 | 1.059(0.689,1.629) | |
S2 | 9 | 0.635 | 0.010 | 0.710(0.550,0.904) | |
S4 | 9 | 0.720 | 0.004 | 0.710(0.550,0.904) | |
出叶强度-枝横截面积 volume-based leafing intensity-twig cross- sectional area | 乔木 | 99 | 0.085 | 0.004 | -1.175(-1.316,-1.051) |
灌木 | 63 | 0.706 | <0.001 | -1.175(-1.316,-1.051) | |
T1 | 18 | 0.806 | <0.001 | -1.545(-1.947,-1.225) | |
T2 | 18 | 0.741 | <0.001 | -1.408(-1.839,-1.079) | |
T3 | 15 | 0.518 | 0.002 | -1.556(-2.333,-1.038) | |
T4 | 14 | 0.868 | <0.001 | -2.071(-2.597,-1.651) | |
T5 | 17 | 0.902 | <0.001 | -2.515(-2.984,-2.119) | |
T6 | 17 | 0.567 | <0.001 | -3.419(-4.873,-2.398) | |
S1 | 11 | 0.576 | 0.007 | -1.368(-1.621,-1.174) | |
S2 | 9 | 0.858 | <0.001 | -1.368(-1.621,-1.174) | |
S3 | 8 | 0.895 | <0.001 | -1.368(-1.621,-1.174) | |
S4 | 9 | 0.925 | <0.001 | -1.368(-1.621,-1.174) | |
S5 | 8 | 0.884 | 0.001 | -1.368(-1.621,-1.174) | |
S6 | 18 | 0.735 | <0.001 | -1.368(-1.621,-1.174) | |
单叶干质量-枝干质量 individual leaf mass-twig mass | 乔木 | 99 | 0.218 | <0.001 | 0.376(0.315,0.448) |
灌木 | 63 | 0.269 | <0.001 | 0.548(0.441,0.681) | |
T1 | 18 | 0.645 | <0.001 | 0.673(0.494,0.919) | |
T2 | 18 | 0.252 | 0.034 | 0.438(0.281,0.683) | |
T5 | 17 | 0.709 | <0.001 | 0.350(0.261,0.468) | |
T6 | 17 | 0.439 | 0.004 | 0.300(0.201,0.449) | |
S1 | 11 | 0.625 | 0.004 | 0.382(0.333,0.442) | |
S2 | 9 | 0.787 | 0.001 | 0.382(0.333,0.442) | |
S4 | 9 | 0.930 | <0.001 | 0.382(0.333,0.442) | |
S5 | 8 | 0.649 | 0.016 | 0.382(0.333,0.442) | |
S6 | 18 | 0.670 | <0.001 | 0.382(0.333,0.442) |
表2
中国东北地区不同生活型阔叶植物叶大小与出叶强度关系的标准化主轴估计"
指标(y-x) index | 生活型/物种 life form/ species | 决定 系数 R2 | P | 斜率(95%置信区间) slope(95% CI) | 指标(y-x) index | 生活型/物种 life form/ species | 决定 系数 R2 | P | 斜率(95%置信区间) slope(95% CI) |
---|---|---|---|---|---|---|---|---|---|
单叶面积- 出叶强度 individual leaf area- volume-based leafing intensity | 乔木 | 0.045 | 0.035 | -0.412(-0.501,-0.339) | 单叶干质量- 出叶强度 individual leaf mass-volume- based leafing intensity | 乔木 | 0.161 | <0.001 | -0.405(-0.486,-0.337) |
灌木 | 0.277 | <0.001 | -0.728(-0.904,-0.587) | 灌木 | 0.305 | <0.001 | -0.672(-0.830,-0.543) | ||
T1 | 0.590 | <0.001 | -0.562(-0.784,-0.403) | T1 | 0.497 | 0.001 | -0.754(-1.089,-0.522) | ||
T2 | 0.422 | 0.004 | -0.358(-0.531,-0.242) | T2 | 0.301 | 0.018 | -0.434(-0.667,-0.282) | ||
T5 | 0.561 | 0.001 | -0.187(-0.268,-0.131) | T5 | 0.566 | <0.001 | -0.271(-0.386,-0.190) | ||
S2 | 0.547 | 0.023 | -0.338(-0.412,-0.272) | T6 | 0.375 | 0.009 | -0.263(-0.402,-0.173) | ||
S4 | 0.841 | 0.001 | -0.338(-0.412,-0.272) | S2 | 0.864 | <0.001 | -0.409(-0.487,-0.341) | ||
S6 | 0.261 | 0.030 | -0.338(-0.412,-0.272) | S4 | 0.813 | 0.001 | -0.409(-0.487,-0.341) | ||
S6 | 0.428 | 0.003 | -0.409(-0.487,-0.341) |
[1] | KATTGE J, DÍAZ S, LAVOREL S, et al. TRY: a global database of plant traits[J]. Global Change Biology, 2011, 17(9):2905-2935.DOI: 10.1111/j.1365-2486.2011.02451.x. |
[2] | VIOLLE C, ENQUIST B J, MCGILL B J, et al. The return of the variance:intraspecific variability in community ecology[J]. Trends in Ecology & Evolution, 2012, 27(4):244-252.DOI: 10.1016/j.tree.2011.11.014. |
[3] | WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985):821-827.DOI: 10.1038/nature02403. |
[4] | YANG J, SONG X Y, CAO M, et al. On the modelling of tropical tree growth:the importance of intra-specific trait variation,non-linear functions and phenotypic integration[J]. Annals of Botany, 2021, 127(4):533-542.DOI: 10.1093/aob/mcaa085. |
[5] | LEVIONNOIS S, COSTE S, NICOLINI E, et al. Scaling of petiole anatomies,mechanics and vasculatures with leaf size in the widespread Neotropical pioneer tree species Cecropia obtusa Trécul (Urticaceae)[J]. Tree Physiology, 2020, 40(2):245-258.DOI: 10.1093/treephys/tpz136. |
[6] | ELLNER S P, SNYDER R E, ADLER P B, et al. An expanded modern coexistence theory for empirical applications[J]. Ecology Letters, 2019, 22(1):3-18.DOI: 10.1111/ele.13159. |
[7] | WESTOBY M, FALSTER D S, MOLES A T, et al. Plant ecological strategies:some leading dimensions of variation between species[J]. Annual Review of Ecology and Systematics, 2002, 33:125-159.DOI: 10.1146/annurev.ecolsys.33.010802.150452. |
[8] | CORNWELL W K, ACKERLY D D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California[J]. Ecological Monographs, 2009, 79(1):109-126.DOI: 10.1890/07-1134.1. |
[9] | MIGLIAVACCA M, MUSAVI T, MAHECHA M D, et al. The three major axes of terrestrial ecosystem function[J]. Nature, 2021, 598(7881):468-472.DOI: 10.1038/s41586-021-03939-9. |
[10] | TAYLOR A, WEIGELT P, DENELLE P, et al. The contribution of plant life and growth forms to global gradients of vascular plant diversity[J]. New Phytologist, 2023, 240(4):1548-1560.DOI: 10.1111/nph.19011. |
[11] | MOUILLOT D, GRAHAM N A J, VILLÉGER S, et al. A functional approach reveals community responses to disturbances[J]. Trends in Ecology & Evolution, 2013, 28(3):167-177.DOI: 10.1016/j.tree.2012.10.004. |
[12] | YAN E R, WANG X H, CHANG S X, et al. Scaling relationships among twig size,leaf size and leafing intensity in a successional series of subtropical forests[J]. Tree Physiology, 2013, 33(6):609-617.DOI: 10.1093/treephys/tpt042. |
[13] | 杨冬梅, 占峰, 张宏伟. 清凉峰不同海拔木本植物小枝内叶大小-数量权衡关系[J]. 植物生态学报, 2012, 36(4):281-291. |
YANG D M, ZHAN F, ZHANG H W. Trade-off between leaf size and number in current-year twigs of deciduous broad-leaved woody species at different altitudes on Qingliang Mountain, southeastern China[J]. Chinese Journal of Plant Ecology, 2012, 36(4):281-291.DOI: 10.3724/SP.J.1258.2012.00281. | |
[14] | CORNER E J H. The durian theory or the origin of the modern tree[J]. Annals of Botany, 1949, 13(4):367-414.DOI: 10.1093/oxfordjournals.aob.a083225. |
[15] | SUN S C, JIN D M, SHI P L. The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient:an invariant allometric scaling relationship[J]. Annals of Botany, 2006, 97(1):97-107.DOI: 10.1093/aob/mcj004. |
[16] | MENG F Q, ZHANG G F, LI X C, et al. Growth synchrony between leaves and stems during twig development differs among plant functional types of subtropical rainforest woody species[J]. Tree Physiology, 2015, 35(6):621-631.DOI: 10.1093/treephys/tpv021. |
[17] | PRESTON K A, ACKERLY D D. Hydraulic architecture and the evolution of shoot allometry in contrasting climates[J]. American Journal of Botany, 2003, 90(10):1502-1512.DOI: 10.3732/ajb.90.10.1502. |
[18] | BROUAT C, GIBERNAU M, AMSELLEM L, et al. Corner’s rules revisited:ontogenetic and interspecific patterns in leaf-stem allometry[J]. New Phytologist, 1998, 139(3):459-470.DOI: 10.1046/j.1469-8137.1998.00209.x. |
[19] | BAIRD A S, TAYLOR S H, PASQUET-KOK J, et al. Developmental and biophysical determinants of grass leaf size worldwide[J]. Nature, 2021, 592(7853):242-247.DOI: 10.1038/s41586-021-03370-0. |
[20] | YANG Y Z, WANG H, HARRISON S P, et al. Quantifying leaf-trait covariation and its controls across climates and biomes[J]. New Phytologist, 2019, 221(1):155-168.DOI: 10.1111/nph.15422. |
[21] | KLEIMAN D, AARSSEN L W. The leaf size/number trade-off in trees[J]. Journal of Ecology, 2007, 95(2):376-382.DOI: 10.1111/j.1365-2745.2006.01205.x. |
[22] | WESTOBY M, WRIGHT I J. The leaf size-twig size spectrum and its relationship to other important spectra of variation among species[J]. Oecologia, 2003, 135(4):621-628.DOI: 10.1007/s00442-003-1231-6. |
[23] | 徐丽娜, 金光泽. 小兴安岭凉水典型阔叶红松林动态监测样地:物种组成与群落结构[J]. 生物多样性, 2012, 20(4):470-481. |
XU L N, JIN G Z. Species composition and community structure of a typical mixed broadleaved-Korean pine (Pinus koraiensis) forest plot in Liangshui Nature Reserve,northeast China[J]. Biodiversity Science, 2012, 20(4):470-481.DOI: 10.3724/SP.J.1003.2012.12233. | |
[24] | WARTON D I, DUURSMA R A, FALSTER D S, et al. Smatr 3: an R package for estimation and inference about allometric lines[J]. Methods in Ecology and Evolution, 2012, 3(2):257-259.DOI: 10.1111/j.2041-210x.2011.00153.x. |
[25] | R CORE TEAM. R: a language and environment for statistical computing[Z]. R Foundation for Statistical Computing, Vienna, Austria, 2021. http://www.R-project.org/. |
[26] | NIINEMETS Ü, KEENAN T F, HALLIK L. A worldwide analysis of within-canopy variations in leaf structural,chemical and physiological traits across plant functional types[J]. New Phytologist, 2015, 205(3):973-993.DOI: 10.1111/nph.13096. |
[27] | DONG N, PRENTICE I C, WRIGHT I J, et al. Components of leaf-trait variation along environmental gradients[J]. New Phytologist, 2020, 228(1):82-94.DOI: 10.1111/nph.16558. |
[28] | ANDEREGG L D L, LOY X, MARKHAM I P, et al. Aridity drives coordinated trait shifts but not decreased trait variance across the geographic range of eight Australian trees[J]. New Phytologist, 2021, 229(3):1375-1387.DOI: 10.1111/nph.16795. |
[29] | SCHÖB C, ARMAS C, GULER M, et al. Variability in functional traits mediates plant interactions along stress gradients[J]. Journal of Ecology, 2013, 101(3):753-762.DOI: 10.1111/1365-2745.12062. |
[30] | WESTOBY M, WRIGHT I J. Land-plant ecology on the basis of functional traits[J]. Trends in Ecology & Evolution, 2006, 21(5):261-268.DOI: 10.1016/j.tree.2006.02.004. |
[31] | VLEMINCKX J, FORTUNEL C, VALVERDE-BARRANTES O, et al. Resolving whole-plant economics from leaf,stem and root traits of 1467 Amazonian tree species[J]. Oikos, 2021, 130(7):1193-1208.DOI: 10.1111/oik.08284. |
[32] | 王进, 朱江, 艾训儒, 等. 湖北星斗山地形变化对不同生活型植物叶功能性状的影响[J]. 植物生态学报, 2019, 43(5):447-457. |
WANG J, ZHU J, AI X R, et al. Effects of topography on leaf functional traits across plant life forms in Xingdou Mountain, Hubei,China[J]. Chinese Journal of Plant Ecology, 2019, 43(5):447-457.DOI: 10.17521/cjpe.2018.0228. | |
[33] | WESTERBAND A C, FUNK J L, BARTON K E. Intraspecific trait variation in plants:a renewed focus on its role in ecological processes[J]. Annals of Botany, 2021, 127(4):397-410.DOI: 10.1093/aob/mcab011. |
[34] | HE D, BISWAS S R, XU M-S, et al. The importance of intraspecific trait variability in promoting functional niche dimensionality[J]. Ecography, 2021, 44(3):380-390.DOI: 10.1111/ecog.05254. |
[35] | GIVNISH T J, VERMEIJ G J. Sizes and shapes of Liane leaves[J]. The American Naturalist, 1976, 110(975):743-778.DOI: 10.1086/283101. |
[36] | FAN Z X, STERCK F, ZHANG S B, et al. Tradeoff between stem hydraulic efficiency and mechanical strength affects leaf-stem allometry in 28 Ficus tree species[J]. Frontiers in Plant Science, 2017,8:1619.DOI: 10.3389/fpls.2017.01619. |
[37] | FAJARDO A, MORA J P, ROBERT E. Corner’s rules pass the test of time:little effect of phenology on leaf-shoot and other scaling relationships[J]. Annals of Botany, 2020, 126(7):1129-1139.DOI: 10.1093/aob/mcaa124. |
[38] | 李曼, 郑媛, 郭英荣, 等. 武夷山不同海拔黄山松枝叶大小关系[J]. 应用生态学报, 2017, 28(2):537-544. |
LI M, ZHENG Y, GUO Y R, et al. Scaling relationships between twig size and leaf size of Pinus hwangshanensis along an altitudinal gradient in Wuyi Mountains,China[J]. Chinese Journal of Applied Ecology, 2017, 28(2):537-544.DOI: 10.13287/j.1001-9332.201702.039. | |
[39] | SLOT M, REY-SÁNCHEZ C, GERBER S, et al. Thermal acclimation of leaf respiration of tropical trees and lianas:response to experimental canopy warming,and consequences for tropical forest carbon balance[J]. Global Change Biology, 2014, 20(9):2915-2926.DOI: 10.1111/gcb.12563. |
[40] | WRIGHT I J, DONG N, MAIRE V, et al. Global climatic drivers of leaf size[J]. Science, 2017, 357(6354):917-921.DOI: 10.1126/science.aal4760. |
[41] | LIU R, YANG X J, GAO R R, et al. Allometry rather than abiotic drivers explains biomass allocation among leaves,stems and roots of Artemisia across a large environmental gradient in China[J]. Journal of Ecology, 2021, 109(2):1026-1040.DOI: 10.1111/1365-2745.13532. |
[42] | YANG D M, LI G Y, SUN S C. The generality of leaf size versus number trade-off in temperate woody species[J]. Annals of Botany, 2008, 102(4):623-629.DOI: 10.1093/aob/mcn135. |
[43] | OSADA N, NABESHIMA E, HIURA T. Geographic variation in shoot traits and branching intensity in relation to leaf size in Fagus crenata:a common garden experiment[J]. American Journal of Botany, 2015, 102(6):878-887.DOI: 10.3732/ajb.1400559. |
[44] | CUI E Q, WENG E S, YAN E R, et al. Robust leaf trait relationships across species under global environmental changes[J]. Nature Communications, 2020, 11(1):2999.DOI: 10.1038/s41467-020-16839-9. |
[45] | 李锦隆, 王满堂, 李涵诗, 等. 冠层高度对江西69种阔叶树小枝单叶生物量与出叶强度关系的影响[J]. 林业科学, 2021, 57(2):62-71. |
LI J L, WANG M T, LI H S, et al. Effects of canopy height on the relationship between individual leaf mass and leafing intensity of 69 broad leaved trees in Jiangxi province[J]. Scientia Silvae Sinicae, 2021, 57(2):62-71. DOI:10.11707/j.1001-7488.20210207. | |
[46] | ZHANG L, COPINI P, WEEMSTRA M, et al. Functional ratios among leaf,xylem and phloem areas in branches change with shade tolerance,but not with local light conditions,across temperate tree species[J]. New Phytologist, 2016, 209(4):1566-1575.DOI: 10.1111/nph.13731. |
[47] | OSADA N, HIURA T. How is light interception efficiency related to shoot structure in tall canopy species?[J]. Oecologia, 2017, 185(1):29-41.DOI: 10.1007/s00442-017-3926-0. |
[48] | MENG F Q, CAO R, YANG D M, et al. Trade-offs between light interception and leaf water shedding:a comparison of shade-and sunvadapted species in a subtropical rainforest[J]. Oecologia, 2014, 174(1):13-22.DOI: 10.1007/s00442-013-2746-0. |
[1] | 杜昕, 董雪, 谷会岩, 陈祥伟. 基于分层Voronoi图的阔叶红松林叶面积指数的垂直与短程水平空间分布研究[J]. 南京林业大学学报(自然科学版), 2025, 49(3): 83-94. |
[2] | 王美权, 关庆伟, 黄宗胜, 袁在翔, 赵家豪. 喀斯特地貌不同生境青篱柴叶片功能性状特征研究[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 162-170. |
[3] | 杜昕, 董雪, 谷会岩, 陈祥伟. 阔叶红松林下幼苗、幼树定植生境散射辐射特征[J]. 南京林业大学学报(自然科学版), 2024, 48(6): 145-156. |
[4] | 王耀仪, 王宏翔, 王永强, 曾文豪, 叶绍明. 雅长保护区老龄林不同林层功能性状多样性及其影响因素分析[J]. 南京林业大学学报(自然科学版), 2024, 48(5): 28-38. |
[5] | 王雪洁, 周鹏, 侯思璇, 方炎明, 张敏. 冬青种质资源叶表型多样性分析[J]. 南京林业大学学报(自然科学版), 2024, 48(5): 90-96. |
[6] | 尹增芳, 欧香, 陈瑶, 杨爱香, 孙李勇. 望春玉兰生物学基础研究进展与展望[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 256-262. |
[7] | 邢冰冰, 李垚, 毛岭峰. 植物功能性状系统发育保守性的类群和地理分异研究——以中国被子植物最大株高为例[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 59-66. |
[8] | 杨永超, 段文标, 陈立新, 曲美学, 王亚飞, 王美娟, 石金永, 潘磊. 模拟氮磷沉降和凋落物处理对两种林型红松林土壤有机碳组分的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 57-66. |
[9] | 贾婷, 宋武云, 关新贤, 魏智文, 陈涵, 易敏, 熊启慧, 张露. 湿地松针叶功能性状及其对磷添加的响应[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 65-71. |
[10] | 廖逸宁, 郭素娟, 王芳芳, 马雅莉, 刘亚斌. 有机-无机肥配施对板栗园土壤肥力及根系功能性状的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 84-92. |
[11] | 韩玉娜, 张瑜, 金光泽. 腐烂等级、径级对阔叶红松林木质残体含水率和密度的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 133-140. |
[12] | 何斌, 李青, 冯图, 薛晓辉, 李望军, 刘勇. 不同林龄马尾松人工林针叶功能性状及其与土壤养分的关系[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 181-190. |
[13] | 宋蕾,林尤伟,金光泽. 模拟氮沉降对典型阔叶红松林土壤微生物群落特征的影响[J]. 南京林业大学学报(自然科学版), 2017, 41(05): 7-12. |
[14] | 欧晓岚,刘艳红. 不同坡向及径级油松异龄叶的功能性状[J]. 南京林业大学学报(自然科学版), 2017, 41(04): 80-88. |
[15] | 刘广路,范少辉,蔡春菊,刘希珍. 毛竹向撂荒地扩展过程中叶功能性状变化[J]. 南京林业大学学报(自然科学版), 2017, 41(02): 41-46. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||