无患子液流时滞特性及对遮蔽花序枝叶修剪的响应

蔡婉婷, 贾黎明, 王冕之, 郑玉琳, 李露, 罗水晶

南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (6) : 5-12.

PDF(1517 KB)
PDF(1517 KB)
南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (6) : 5-12. DOI: 10.12302/j.issn.1000-2006.202403022
专题报道:乡村振兴视域下的生物质能源树种无患子研究专题(执行主编 李维林 方升佐 贾黎明)

无患子液流时滞特性及对遮蔽花序枝叶修剪的响应

作者信息 +

Time lag of sap flow characteristics and their response to inflorescence shading and pruning of leaves and branch for Sapindus saponaria

Author information +
文章历史 +

摘要

【目的】探究无患子(Sapindus saponaria )生殖物候期树干液流的时滞特性以及遮蔽花序枝叶修剪对时滞的影响,为无患子的科学培育提供指导。【方法】在福建省建宁县无患子国家林木种质资源库,以5年生‘媛华’品种示范林为试验对象,在其生殖生长季(5—11月)运用热扩散液流探针技术对修剪和不修剪(对照)处理无患子的树干液流速率(Fd)进行实时监测,并同步监测光合有效辐射 (PAR)、空气温度(Ta)、空气相对湿度(RHa)等环境因子,运用错位相关法分析液流速率对主导环境因子间的时滞响应。【结果】无论是否进行修剪处理,PAR和饱和水汽压亏缺(VPD)均是影响该地区无患子树干液流的主导环境因子。典型晴天时,无患子树干液流与主导环境因子均呈现“迟滞回环”的关系,其中与PAR的响应过程呈逆时针方向,与VPD的响应过程呈顺时针方向。对照组和修剪组树干液流在花芽膨大期、开花期、初果期、果实膨大期、果实转色期、果实成熟期等6个生殖物候期分别比PAR滞后10、10、0、10、20、50 min和0、20、10、10、20、50 min;比VPD提前160、120、90、90、130、100 min和190、110、70、90、130、100 min。【结论】不同生殖物候期无患子树干液流与主导环境因子间的时滞存在差异,修剪减小了花芽膨大期Fd-PAR的时滞,增大了开花期和初果期Fd-PAR的时滞,但修剪在各生殖期对Fd-VPD的时滞影响相反。该研究为准确评价环境因子对林木耗水产生的影响提供了科学依据,也有助于构建更准确模拟白天蒸腾过程的模型。

Abstract

【Objective】This study aims to investigate the time lag characteristics of sap flow during reproductive phenological periods in Sapindus saponaria and the effect of shading inflorescence branching and leaf pruning on the time lag of sap flow.【Method】In the experimental area of the Sapindus saponaria National Forest Germplasm Repository in Jianning County, Fujian Province, five-year-old S. saponaria ‘Yuanhua’ asexual lines were employed as experimental materials. Sap flow was measured using a thermal diffusion probe, and environmental factors including photosynthetically active radiation (PAR), air temperature (Ta), and relative air humidity (RHa) were simultaneously measured during the reproductive growing season.Time lags between sap flow velocity and the dominant environmental factors were analyzed using the mismatch correlation method.【Result】PAR and VPD were the dominant environmental factors affecting sap flow, independent of pruning treatments. On typical sunny days, the relationship between sap flow and these environmental factors showed a “hysteresis loop”, with PAR responsed in a counterclockwise direction and VPD responsed in a clockwise direction. Across six reproductive phenological periods (bud swelling, flowering, early ovary growing, fruit developmet, fruit colour change, fruit ripening), the control (CK) and pruning group sap flow lagged PAR by 10, 10, 0, 10, 20, 50 min and 0, 20, 10, 10, 20, 50 min, respectively; and advanced VPD by 160, 120, 90, 90, 130, 100 min and 190,110, 70, 90, 130, 100 min at six key reproductive phenological periods.【Conclusion】The time lag between sap flow and dominant environmental factors varied across different reproductive phenological periods. Pruning impacted these time lags differently: it reduced the time lag of Fd-PAR during bud swelling and increased it during the flowering and early ovary growing periods, while it had the opposite effect on Fd-VPD. This study provides a scientific foundation for accurately evaluating the influence of environmental factors on the water consumption of forest trees and contributes to the development of more precise models to simulate daytime transpiration processes.

关键词

无患子 / 树干液流 / 时滞 / 修剪 / 生殖物候期 / 环境因子

Key words

Sapindus saponaria / sap flow / time lag / pruning / reproductive phenological period / environmental factor

引用本文

导出引用
蔡婉婷, 贾黎明, 王冕之, . 无患子液流时滞特性及对遮蔽花序枝叶修剪的响应[J]. 南京林业大学学报(自然科学版). 2024, 48(6): 5-12 https://doi.org/10.12302/j.issn.1000-2006.202403022
CAI Wanting, JIA Liming, WANG Mianzhi, et al. Time lag of sap flow characteristics and their response to inflorescence shading and pruning of leaves and branch for Sapindus saponaria[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(6): 5-12 https://doi.org/10.12302/j.issn.1000-2006.202403022
中图分类号: S718;Q89   

参考文献

[1]
DALEY M J, PHILLIPS N G. Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest[J]. Tree Physiol, 2006, 26(4):411-419.DOI: 10.1093/treephys/26.4.411.
[2]
张瑞婷, 杨金艳, 阮宏华. 树干液流对环境变化响应研究的整合分析[J]. 南京林业大学学报(自然科学版), 2022, 46(5):113-120.
ZHANG R T, YANG J Y, RUAN H H. Meta-analyses of responses of sap flow to changes in environmental factors[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(5):113-120.DOI: 10.12302/j.issn.1000-2006.202101029.
[3]
唐子舒, 王根绪, 胡兆永. 贡嘎山不同径级峨眉冷杉树干液流特征及其影响因素[J]. 山地学报, 2022, 40(2):220-234.
TANG Z S, WANG G X, HU Z Y. Characteristics of stem sap flow and influencing factors of Abies fabri in varied diameters on mount Gongga,China[J]. Mt Res, 2022, 40(2):220-234.DOI: 10.16089/j.cnki.1008-2786.000667.
[4]
王慧梅, 孙伟, 祖元刚, 等. 不同环境因子对兴安落叶松树干液流的时滞效应复杂性及其综合影响[J]. 应用生态学报, 2011, 22(12):3109-3116.
WANG H M, SUN W, ZU Y G, et al. Complexity and its integrative effects of the time lags of environment factors affecting Larix gmelinii stem sap flow[J]. Chin J Appl Ecol, 2011, 22(12):3109-3116.DOI: 10.13287/j.1001-9332.2011.0465.
[5]
赵仲辉, 康文星, 田大伦, 等. 湖南会同杉木液流变化及其与环境因子的关系[J]. 林业科学, 2009, 45(7):127-132.
ZHAO Z H, KANG W X, TIAN D L, et al. Sap flow rate and its relationship with environmental factors of Chinese fir plantation in Huitong,Hunan Province[J]. Sci Silvae Sin, 2009, 45(7):127-132.DOI: 10.3321/j.issn:1001-7488.2009.07.021.
[6]
李豆豆, 席本野, 王斐, 等. 毛白杨叶片膨压变化规律及其对环境因子的响应[J]. 植物生态学报, 2018, 42(7):741-751.
LI D D, XI B Y, WANG F, et al. Patterns of variations in leaf turgor pressure and responses to environmental factors in Populus tomentosa[J]. Chin J Plant Ecol, 2018, 42(7):741-751.DOI: 10.17521/cjpe.2018.0097.
[7]
HERK I G, GOWER S T, BRONSON D R, et al. Effects of climate warming on canopy water dynamics of a boreal black spruce plantation[J]. Can J For Res, 2011, 41(2):217-227.DOI: 10.1139/X10-196.
[8]
URBAN J, RUBTSOV A V, URBAN A V, et al. Canopy transpiration of a Larix sibirica and Pinus sylvestris forest in Central Siberia[J]. Agric For Meteor, 2019, 271:64-72.DOI: 10.1016/j.agrformet.2019.02.038.
[9]
王瑛, 刘美君, 杜盛. 树干液流时滞特征及影响因素研究进展[J]. 应用与环境生物学报, 2023, 29(2):507-514.
WANG Y, LIU M J, DU S. Research progress in the characteristics and driving factors of time lags in stem sap flow[J]. Chin J Appl Environ Biol, 2023, 29(2):507-514.DOI: 10.19675/j.cnki.1006-687X.2021.11024.
[10]
SCHULZE D E, ČERMÁK J, MATYSSEK R, et al. Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Picea trees: a comparison of xylem flow,porometer and cuvette measurements[J]. Oecologia, 1985, 66(4):475-483.DOI: 10.1007/BF00379337.
[11]
孙迪, 关德新, 袁凤辉, 等. 辽西农林复合系统中杨树液流速率与气象因子的时滞效应[J]. 应用生态学报, 2010, 21(11):2742-2748.
SUN D, GUAN D X, YUAN F H, et al. Time lag effect between poplar’s sap flow velocity and microclimate factors in agroforestry system in west Liaoning Province[J]. Chin J Appl Ecol, 2010, 21(11):2742-2748.DOI: 10.13287/j.1001-9332.2010.0426.
[12]
韩磊, 展秀丽, 王芳, 等. 河东沙区侧柏树干液流与蒸腾驱动因子的时滞效应研究[J]. 生态环境学报, 2018, 27(8):1417-1423.
HAN L, ZHAN X L, WANG F, et al. Time lag effect between stem sap flow and driving factors of transpiration of Platycladus orientalis in east sandy land of Yellow River[J]. Ecol Environ Sci, 2018, 27(8):1417-1423.DOI: 10.16258/j.cnki.1674-5906.2018.08.005.
[13]
刘济铭, 孙操稳, 何秋阳, 等. 国内外无患子属种质资源研究进展[J]. 世界林业研究, 2017, 30(6):12-18.
LIU J M, SUN C W, HE Q Y, et al. Research progress in Sapindus L. germplasm resources[J]. World For Res, 2017, 30(6):12-18.DOI: 10.13348/j.cnki.sjlyyj.2017.0071.y.
[14]
UPADHYAY A, SINGH D K. Molluscicidal activity of Sapindus mukorossi and Terminalia chebula against the freshwater snail Lymnaea acuminata[J]. Chemosphere, 2011, 83(4):468-474.DOI: 10.1016/j.chemosphere.2010.12.066.
[15]
刘俊涛, 仲静, 刘济铭, 等. 无患子初果期人工林土壤和叶片C、N、P化学计量特征[J]. 南京林业大学学报(自然科学版), 2021, 45(4):67-75.
LIU J T, ZHONG J, LIU J M, et al. Stoichiometric characteristics of soil and leaves in Sapindus mukorossi plantation at an early fruiting stage[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(4):67-75.DOI: 10.12302/j.issn.1000-2006.202104011.
[16]
CHAKRABORTY M, BARUAH D C. Production and characterization of biodiesel obtained from Sapindus mukorossi kernel oil[J]. Energy, 2013, 60:159-167.DOI: 10.1016/j.energy.2013.07.065.
[17]
刘诗琦, 贾黎明, 苏淑钗, 等. 林业生物质能源“林油一体化” 产业高效可持续发展路径研究[J]. 北京林业大学学报, 2019, 41(12):96-107.
LIU S Q, JIA L M, SU S C, et al. Efficient and sustainable development path of forest-based bioenergy “forestry-oil integration” industry[J]. J Beijing For Univ, 2019, 41(12):96-107.
[18]
张赟齐, 刘晨, 刘阳, 等. 叶幕微域环境对无患子果实产量和品质的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(5):189-198.
ZHANG Y Q, LIU C, LIU Y, et al. Effects of canopy micro-environment on fruit yield and quality characteristics of Sapindus mukorossi[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(5):189-198.DOI: 10.3969/j.issn.1000-2006.202001031.
[19]
高媛, 贾黎明, 高世轮, 等. 无患子树体合理光环境及高光效调控[J]. 林业科学, 2016, 52(11):29-38.
GAO Y, JIA L M, GAO S L, et al. Reasonable canopy light intensity and high light efficiency regulation of Sapindus mukorossi[J]. Sci Silvae Sin, 2016, 52(11):29-38.DOI: 10.11707/j.1001-7488.20161104.
[20]
叶苗泰, 霍高鹏, 杨博, 等. 修剪对山地苹果蒸腾的影响及模拟[J]. 中国农业科学, 2019, 52(17):3020-3033.
YE M T, HUO G P, YANG B, et al. Measurements and modeling of the impacts of different pruning degrees on transpiration of apple orchard in hilly regions[J]. Sci Agric Sin, 2019, 52(17):3020-3033.DOI: 10.3864/j.issn.0578-1752.2019.17.010.
[21]
冯健, 战金伟, 杨圆圆, 等. 施肥对落叶松种子园母树物候特征的影响[J]. 森林工程, 2023, 39(6):55-63.
FENG J, ZHAN J W, YANG Y Y, et al. Effects of fertilization on phenological characteristics of mother trees in larch seed or chard[J]. For Eng, 2023, 39(6):55-63.
[22]
ZHAO G C, GAO Y H, GAO S L, et al. The phenological growth stages of Sapindus mukorossi according to BBCH scale[J]. Forests, 2019, 10(6):462.DOI: 10.3390/f10060462.
[23]
高媛, 贾黎明, 苏淑钗, 等. 无患子物候及开花结果特性[J]. 东北林业大学学报, 2015, 43(6):34-40,123.
GAO Y, JIA L M, SU S C, et al. Phenology and blossom-fruiting characteristics of Sapindus mukorossi[J]. J Northeast For Univ, 2015, 43(6):34-40,123.DOI: 10.13759/j.cnki.dlXb.20150522.062.
[24]
GRANIER A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements[J]. Tree Physiol, 1987, 3(4):309-320.DOI: 10.1093/treephys/3.4.309.
[25]
刘洋, 王烨, 王斐, 等. 宽窄行栽植下毛白杨不同方位树干液流的差异[J]. 中南林业科技大学学报, 2018, 38(10):95-105.
LIU Y, WANG Y, WANG F, et al. Azimuthal variation in sap flux density of Populus tomentosa under wide and narrow row planting scheme[J]. J Cent South Univ For Technol, 2018, 38(10):95-105.DOI: 10.14067/j.cnki.1673-923X.2018.10.015.
[26]
赵飞飞, 马煦, 邸楠, 等. 毛白杨茎干不同方位夜间液流变化规律及其主要影响因子[J]. 植物生态学报, 2020, 44(8):864-874.
ZHAO F F, MA X, DI N, et al. Azimuthal variation in nighttime sap flow and its mainly influence factors of Populus tomentosa[J]. Chin J Plant Ecol, 2020, 44(8):864-874.DOI: 10.17521/cjpe.2020.0089.
[27]
CAMPBELL G S, NORMAN J M. An introduction to environmental biophysics[M]. Berlin: Springer Science & Business Media, 2000.
[28]
赵平, 饶兴权, 马玲, 等. 马占相思(Acacia mangium)树干液流密度和整树蒸腾的个体差异[J]. 生态学报, 2006, 26(12):4050-4058.
ZHAO P, RAO X Q, MA L, et al. The variations of sap flux density and whole-tree transpiration across individuals of Acacia mangium[J]. Acta Ecol Sin, 2006, 26(12):4050-4058.DOI: 10.3321/j.issn:1000-0933.2006.12.018.
[29]
曹文强, 韩海荣, 马钦彦, 等. 山西太岳山辽东栎夏季树干液流通量研究[J]. 林业科学, 2004, 40(2):174-177.
CAO W Q, HAN H R, MA Q Y, et al. Sap flow flux of Quercus liaotungensis in summer in deciduous broad-leaf forest of Taiyue Mountain in Shanxi Province[J]. Sci Silvae Sin, 2004, 40(2):174-177.DOI: 10.3321/j.issn:1001-7488.2004.02.031.
[30]
GRANIER A, CLAUSTRES J P. Water relations of a Norway spruce (Picea abies) tree growing in natural condition: variation within the tree[J]. Acta Oecol, 1989, 10(3): 295-310.
[31]
黄雅茹, 李永华, 辛智鸣, 等. 平茬措施对人工梭梭树干液流的影响及其与气象因子的关系[J]. 中南林业科技大学学报, 2021, 41(3):129-139.
HUANG Y R, LI Y H, XIN Z M, et al. Effects of stumping on sap flow of artificial Haloxylon ammodendron and its relationship with meteorological factors[J]. J Cent South Univ For Technol, 2021, 41(3):129-139.DOI: 10.14067/j.cnki.1673-923X.2021.03.014.
[32]
CERMÁK J, KUCERA J, BAUERLE W L, et al. Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees[J]. Tree Physiol, 2007, 27(2):181-198.DOI: 10.1093/treephys/27.2.181.
[33]
DZIKITI S, STEPPE K, LEMEUR R, et al. Whole-tree level water balance and its implications on stomatal oscillations in orange trees(Citrus sinensis (L.) Osbeck) under natural climatic conditions[J]. J Exp Bot, 2007, 58(7):1893-1901.DOI: 10.1093/jXb/erm023.
[34]
WANG H, HE K N, LI R J, et al. Impact of time lags on diurnal estimates of canopy transpiration and canopy conductance from sap-flow measurements of Populus cathayana in the Qinghai-Tibetan Plateau[J]. J For Res, 2017, 28(3):481-490.DOI: 10.1007/s11676-016-0333-z.
[35]
王浩宇, 刘建功, 袁泓昌, 等. 3种浸提液对樟子松种子萌发和幼苗生长的影响[J]. 森林工程, 2023, 39(3):30-39.
WANG H Y, LIU J G, YUAN H C, et al. Effects of three extracts on seed germination and seedling growth of Pinus sylvestris var. mongolica[J]. For Eng, 2023, 39(3):30-39.
[36]
党宏忠, 杨文斌, 李卫, 等. 民勤绿洲二白杨树干液流的径向变化及时滞特征[J]. 应用生态学报, 2014, 25(9):2501-2510.
DANG H Z, YANG W B, LI W, et al. Radial variation and time lag of sap flow of Populus gansuensis in Minqin Oasis,northwest China[J]. Chin J Appl Ecol, 2014, 25(9):2501-2510.DOI: 10.13287/j.1001-9332.20140627.001.
[37]
SHEKOOFA A, ROSAS-ANDERSON P, CARLEY D S, et al. Limited transpiration under high vapor pressure deficits of creeping bentgrass by application of Daconil-Action[J]. Planta, 2016, 243(2):421-427.DOI: 10.1007/s00425-015-2417-y.
[38]
王城城, 叶文伟, 赵从举, 等. 热带桉树树干液流的时滞效应分析[J]. 灌溉排水学报, 2022, 41(1):25-32.
WANG C C, YE W W, ZHAO C J, et al. Sap flow in the stem of Eucalyptus and changes in meteorological factors are not consistent[J]. J Irrig Drain, 2022, 41(1):25-32.DOI: 10.13522/j.cnki.ggps.2020706.
[39]
HAN C, CHEN N, ZHANG C K, et al. Sap flow and responses to meteorological about the Larix principis-rupprechtii plantation in Gansu Xinlong Mountain,northwestern China[J]. For Ecol Manag, 2019,451:117519.DOI: 10.1016/j.foreco.2019.117519.
[40]
WANG X F, LIU J F, SUN Y Y, et al. Sap flow characteristics of three afforestation species during the wet and dry seasons in a dry-hot valley in southwest China[J]. J For Res, 2017, 28(1):51-62.DOI: 10.1007/s11676-016-0276-4.
[41]
HONG L, GUO J B, LIU Z B, et al. Time-lag effect between sap flow and environmental factors of Larix principis-rupprechtii Mayr[J]. Forests, 2019, 10(11):971.DOI: 10.3390/f10110971.
[42]
杨丽琳, 邢万秋, 王卫光, 等. 新安江源区杉木树干液流速率变化及其对环境因子的响应[J]. 植物生态学报, 2023, 47(4):571-583.
YANG L L, XING W Q, WANG W G, et al. Variation of sap flow rate of Cunninghamia lanceolata and its response to environmental factors in the source area of Xin’anjiang River[J]. Chin J Plant Ecol, 2023, 47(4):571-583.DOI: 10.17521/cjpe.2022.0177.
[43]
MOLINA A J, ARANDA X, LLORENS P, et al. Sap flow of a wild cherry tree plantation growing under Mediterranean conditions:assessing the role of environmental conditions on canopy conductance and the effect of branch pruning on water productivity[J]. Agric Water Manag, 2019, 218:222-233.DOI: 10.1016/j.agwat.2019.03.019.
[44]
魏新光, 陈滇豫, LIU Shouyang, 等. 修剪对黄土丘陵区枣树蒸腾的调控作用[J]. 农业机械学报, 2014, 45(12):194-202,315.
WEI X G, CHEN D Y, LIU S Y, et al. Effect of trim on jujube transpiration in Loess Hilly Region[J]. Trans Chin Soc Agric Mach, 2014, 45(12):194-202,315.DOI: 10.6041/j.issn.1000-1298.2014.12.029.

基金

国家科技基础资源调查专项(2019FY100803)

编辑: 王国栋
PDF(1517 KB)

Accesses

Citation

Detail

段落导航
相关文章

/