文冠果BZR1基因家族鉴定及功能分析

许慧慧, 班卓, 王晨雪, 毕泉鑫, 刘肖娟, 王利兵

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (2) : 12-22.

PDF(6192 KB)
PDF(6192 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (2) : 12-22. DOI: 10.12302/j.issn.1000-2006.202403036
专题报道:推进乡村全面振兴视域下的多功能油用树种文冠果研究(执行主编 尹佟明 李维林)

文冠果BZR1基因家族鉴定及功能分析

作者信息 +

The identification and functional analysis of BZR1 genes in yellowhorn

Author information +
文章历史 +

摘要

【目的】探究文冠果(Xanthoceras sorbifolium)Brassinazole Resistance 1(BZR1)基因家族成员的特征及其在非生物胁迫响应中的作用,为文冠果XsBZR1基因功能的研究和抗逆新品种的选育提供理论参考。【方法】利用生物信息学方法鉴定并系统分析文冠果XsBZR1基因家族;构建35S::XsBZR1-eYFP融合蛋白,对XsBZR1进行亚细胞定位分析;通过实时荧光定量PCR技术分析XsBZR1基因在非生物胁迫下的表达模式;构建XsBZR1- 9基因的过表达载体并转化到拟南芥(Arabidopsis thaliana)中,观察转基因株系与野生型植株在盐胁迫处理下的生长情况。【结果】①在文冠果基因组中共鉴定出9个BZR1基因,分别命名为XsBZR1-1XsBZR1-9,这些基因不均匀地分布在6条染色体上。②系统进化和共线性分析表明,XsBZR1蛋白与双子叶植物的BZR 1转录因子亲缘关系更为密切。③XsBZR1基因的启动子区域具有大量的光响应、激素响应元件以及胁迫应答响应元件。④亚细胞定位结果和预测结果一致,9个XsBZR1均定位于细胞核。⑤qRT-PCR分析表明,9个XsBZR1基因在不同的非生物胁迫下表现出不同的表达模式。除XsBZR1-7外,其余XsBZR1基因在低温胁迫下3 h时迅速上调表达;盐胁迫下XsBZR1的表达量呈现较大的差异性,XsBZR1-3/4/5/7的表达受到盐胁迫的显著抑制,而XsBZR1-1XsBZR1-9在盐胁迫处理9 h时表达量提高到约20倍;XsBZR1-3/7/8/9在干旱处理9 h时表达量提高到2倍以上,而其余XsBZR1在干旱处理下的表达水平变化不大;9个XsBZR1均受到ABA的诱导表达,其中XsBZR1-8在ABA处理9 h时表达量提高到35倍。⑥在拟南芥中过表达XsBZR1-9发现,转基因植株在盐胁迫处理后的主根长度显著高于野生型植株。【结论】XsBZR1家族成员参与了文冠果非生物胁迫响应,过表达XsBZR1-9显著提高植物对盐胁迫的耐受性,这为进一步分析XsBZR1基因在文冠果抗逆机制中的作用奠定了基础。

Abstract

【Objective】This study aimed to systematically characterize the BZR1 transcription factor family in yellowhorn (Xanthoceras sorbifolium) and elucidate its functional roles in abiotic stress response, thereby providing insights for breeding stress-resistant cultivars.【Method】Genome-wide identification of XsBZR1 genes was performed using bioinformatics tools. Subcellular localization of XsBZR1 proteins was validated via 35S::XsBZR1-eYFP fusion constructs. Expression profiles under abiotic stresses (low temperature, salt, drought) and abscisic acid (ABA) treatment were analyzed by qRT-PCR. Functional validation was conducted by overexpressing XsBZR1- 9 in Arabidopsis thaliana and assessing salt tolerance phenotypes.【Result】Nine XsBZR1 genes (XsBZR1-1 to XsBZR1-9) were identified and distributed unevenly across six chromosomes. Phylogenetic and synteny analyses revealed close evolutionary relationships with dicotyledonous BZR1 orthologs. Promoter regions harbored abundant cis-regulatory elements associated with light responsiveness (48.9%), hormone signaling (35.0%) and stress adaptation (24.6%). The nuclear localization of all XsBZR1 proteins was experimentally confirmed. Differential expression patterns were observed under stress conditions: low temperature (4 ℃) rapidly induced eight XsBZR1 genes (1.3- to 6.0-fold upregulation at 3 h; P<0.05), except XsBZR1-7. Salt stress (150 mmol/L NaCl) suppressed XsBZR1-3/4/5/7 but strongly upregulated XsBZR1-1 (26.1-fold) and XsBZR1-9 (19.6-fold) at 9 h (P<0.001). Drought stress (mass fraction 25% PEG6000) elevated XsBZR1- 3/7/8/9 expression (>1.9-fold at 9 h), while others remained stable. ABA treatment (100 μmol/L) universally induced XsBZR1 genes, with XsBZR1-8 showing a 35.4-fold increase (P<0.001).Transgenic Arabidopsis overexpressing XsBZR1-9 exhibited enhanced salt tolerance, with taproot lengths twice that of the wild-type under 100 mmol/L NaCl (P<0.01).【Conclusion】The XsBZR1 gene family plays pivotal roles in yellowhorn’s abiotic stress response, with XsBZR1-9 demonstrating significant potential for improving salt tolerance. These findings advance the molecular understanding of stress adaptation mechanisms in woody plants and provide targets for precision breeding.

关键词

文冠果 / BZR1转录因子 / 非生物胁迫 / 基因过表达 / 盐胁迫响应 / XsBZR1-9

Key words

yellowhorn(Xanthoceras sorbifolium) / BZR1 transcription factor / abiotic stress tolerance / gene overexpression / salt stress response / XsBZR1- 9

引用本文

导出引用
许慧慧, 班卓, 王晨雪, . 文冠果BZR1基因家族鉴定及功能分析[J]. 南京林业大学学报(自然科学版). 2025, 49(2): 12-22 https://doi.org/10.12302/j.issn.1000-2006.202403036
XU Huihui, BAN Zhuo, WANG Chenxue, et al. The identification and functional analysis of BZR1 genes in yellowhorn[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(2): 12-22 https://doi.org/10.12302/j.issn.1000-2006.202403036
中图分类号: S722   

参考文献

[1]
YANG Y Z, CHU C C, QIAN Q, et al. Leveraging brassinosteroids towards the next green revolution[J]. Trends Plant Sci, 2024, 29(1):86-98.DOI:10.1016/j.tplants.2023.09.005.
[2]
王孟珂, 杨晓明, 汪贵斌, 等. 外施24-表油菜素内酯(EBR)对银杏叶片发育和生理特征影响[J]. 南京林业大学学报(自然科学版), 2023, 47(4):81-87.
WANG M K, YANG X M, WANG G B, et al. Effects of external 24-epibrassinolide (EBR) application on the development and physiological characteristics of Ginkgo biloba leaves[J]. J Nanjing For Univ (Nat Sci Ed), 2023, 47(4):81-87.DOI:10.12302/j.issn.1000-2006.202109026.
[3]
NOLAN T M, VUKAŠINOVIĆ N, LIU D R, et al. Brassinosteroids:multidimensional regulators of plant growth,development,and stress responses[J]. Plant Cell, 2020, 32(2):295-318.DOI:10.1105/tpc.19.00335..
[4]
SHE J, HAN Z F, KIM T W, et al. Structural insight into brassinosteroid perception by BRI1[J]. Nature, 2011, 474(7352):472-476.DOI:10.1038/nature10178.
[5]
NAM K H, LI J M. BRI1/BAK1,a receptor kinase pair mediating brassinosteroid signaling[J]. Cell, 2002, 110(2):203-212.DOI:10.1016/s0092-8674(02)00814-0.
[6]
WANG Z Y, NAKANO T, GENDRON J, et al. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis[J]. Dev Cell, 2002, 2(4):505-513.DOI:10.1016/s1534-5807(02)00153-3.
[7]
NOSAKI S, MIYAKAWA T, XU Y Q, et al. Structural basis for brassinosteroid response by BIL1/BZR1[J]. Nat Plants, 2018, 4(10):771-776.DOI:10.1038/s41477-018-0255-1.
[8]
SUN Y, FAN X Y, CAO D M, et al. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis[J]. Dev Cell, 2010, 19(5):765-777.DOI:10.1016/j.devcel.2010.10.010.
[9]
YU X F, LI L, ZOLA J, et al. A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana[J]. Plant J, 2011, 65(4):634-646.DOI:10.1111/j.1365-313X.2010.04449.x.
[10]
REINHOLD H, SOYK S, SIMKOVÁ K, et al. β-amylase-like proteins function as transcription factors in Arabidopsis,controlling shoot growth and development[J]. Plant Cell, 2011, 23(4):1391-1403.DOI:10.1105/tpc.110.081950.
[11]
YIN Y H, VAFEADOS D, TAO Y, et al. A new class of transcription factors mediates brassinosteroid: regulated gene expression in Arabidopsis[J]. Cell, 2005, 120(2):249-259.DOI:10.1016/j.cell.2004.11.044.
[12]
THALMANN M, COIRO M, MEIER T, et al. The evolution of functional complexity within the β-amylase gene family in land plants[J]. BMC Evol Biol, 2019, 19(1):66.DOI:10.1186/s12862-019-1395-2.
[13]
沈春洋. 番茄BZR基因家族生物信息学分析及抗逆基因功能鉴定[D]. 哈尔滨: 东北农业大学, 2022.
SHEN C Y. Bioinformatics analysis of tomato BZR gene family and functional identification of stress-resistant genes[D].Harbin: Northeast Agricultural University, 2022.DOI: 10.27010/d.cnki.gdbnu.2022.000291.
[14]
CAO X, KHALIQ A, LU S, et al. Genome-wide identification and characterization of the BES1 gene family in apple (Malus domestica)[J]. Plant Biol, 2020, 22(4):723-733.DOI:10.1111/plb.13109.
[15]
CUI X Y, GAO Y, GUO J, et al. BES/BZR transcription factor TaBZR2 positively regulates drought responses by activation of TaGST1[J]. Plant Physiol, 2019, 180(1):605-620.DOI:10.1104/pp.19.00100.
[16]
JIA C G, ZHAO S K, BAO T T, et al. Tomato BZR/BES transcription factor SlBZR1 positively regulates BR signaling and salt stress tolerance in tomato and Arabidopsis[J]. Plant Sci, 2021,302:110719.DOI:10.1016/j.plantsci.2020.110719.
[17]
SUN Z T, LIU X Z, ZHU W D, et al. Molecular traits and functional exploration of BES1 gene family in plants[J]. Int J Mol Sci, 2022, 23(8):4242.DOI:10.3390/ijms23084242.
[18]
ZHAO Y, LIU X J, WANG M K, et al. Transcriptome and physiological analyses provide insights into the leaf epicuticular wax accumulation mechanism in yellowhorn[J]. Hortic Res, 2021, 8(1):134.DOI:10.1038/s41438-021-00564-5.
[19]
YU H Y, FAN S Q, BI Q X, et al. Seed morphology,oil content and fatty acid composition variability assessment in yellow horn (Xanthoceras sorbifolium Bunge) germplasm for optimum biodiesel production[J]. Ind Crops Prod, 2017, 97:425-430.DOI:10.1016/j.indcrop.2016.12.054.
[20]
麻云霞. 文冠果种子特性变异及优良砧用种源选择[D]. 呼和浩特: 内蒙古农业大学, 2021.
MA Y X. Variation of seed characteristics and selection of superior rootstock provenance of Xanthoceras sorbifolia Bunge[D]. Hohhot: Inner Mongolia Agricultural University, 2021.DOI: 10.27229/d.cnki.gnmnu.2021.000047.
[21]
刘志. 文冠果WRKY转录因子家族的鉴定及非生物胁迫响应模式分析[D]. 哈尔滨: 东北林业大学, 2020.
LIU Z. Identification of WRKY transcription factor family in Xanthoceras sorbifolia Bunge and analysis of abiotic stress response pattern[D].Harbin: Northeast Forestry University, 2020.DOI: 10.27009/d.cnki.gdblu.2020.000390.
[22]
常巧颖. 文冠果bZIP转录因子家族鉴定和非生物胁迫应答模式分析[D]. 哈尔滨: 东北林业大学, 2020.
CHANG Q Y. Identification of bZIP transcription factor family in Xanthoceras sorbifolia Bunge and analysis of abiotic stress response pattern[D].Harbin: Northeast Forestry University, 2020.DOI: 10.27009/d.cnki.gdblu.2020.000536.
[23]
杨娟, 姜阳明, 周芳, 等. PEG模拟干旱胁迫对不同抗旱性玉米品种苗期形态与生理特性的影响[J]. 作物杂志, 2021(1):82-89.
YANG J, JIANG Y M, ZHOU F, et al. Effects of PEG simulated drought stress on seedling morphology and physiological characteristics of different drought-resistance maize varieties[J]. Crops, 2021(1):82-89.DOI:10.16035/j.issn.1001-7283.2021.01.012.
[24]
BI Q X, WANG M K, LI J, et al. The phased chromosome-scale genome of yellowhorn sheds light on the mechanism of petal color change[J]. Hortic Plant J, 2023, 9(6):1193-1206.DOI:10.1016/j.hpj.2023.05.010.
[25]
LANG Y H, LIU Z. Basic Helix-Loop-Helix (bHLH) transcription factor family in Yellow horn (Xanthoceras sorbifolia Bunge):genome-wide characterization,chromosome location,phylogeny,structures and expression patterns[J]. Int J Biol Macromol, 2020, 160:711-723.DOI:10.1016/j.ijbiomac.2020.05.253.
[26]
周晔, 赵璇, 王璐, 等. 植物BZR家族基因调控非生物胁迫应答和生长发育的研究进展[J]. 中国油料作物学报, 2020, 42(4):499-511.
ZHOU Y, ZHAO X, WANG L, et al. Research advances on plant BZR family genes in regulating abiotic stress response and development[J]. Chin J Oil Crop Sci, 2020, 42(4):499-511.DOI:10.19802/j.issn.1007-9084.2020163.
[27]
王黎明, 杨瑞珍, 孙加强. 油菜素内酯调控作物农艺性状和非生物胁迫响应的研究进展[J]. 生物工程学报, 2022, 38(1):34-49.
WANG L M, YANG R Z, SUN J Q. Regulation of crop agronomic traits and abiotic stress responses by brassinosteroids:a review[J]. Chin J Biotechnol, 2022, 38(1):34-49.DOI:10.13345/j.cjb.210236.
[28]
YANG J, WU Y, LI L, et al. Comprehensive analysis of the BES1 gene family and its expression under abiotic stress and hormone treatment in Populus trichocarpa[J]. Plant Physiol Biochem, 2022, 173:1-13.DOI:10.1016/j.plaphy.2022.01.019.
[29]
尹魁林, 程莎莎, 艾长丰, 等. 枣BZR基因家族的鉴定及其在果实发育中的表达分析[J/OL]. 分子植物育种:1-13[2024-03-26].
YIN K L, CHENG S S, AI C F, et al. Genome-wide identification of ZjBZR gene family and expression analysis in jujube fruit[J/OL]. Molecular Plants Breeding:1-13. [2024-03-26].
[30]
FENG W Q, ZHANG H, CAO Y, et al. Maize ZmBES1/BZR1-1 transcription factor negatively regulates drought tolerance[J]. Plant Physiol Biochem, 2023,205:108188.DOI:10.1016/j.plaphy.2023.108188.
[31]
明川. 玉米BES1/BZR1转录因子基因鉴定[D]. 雅安: 四川农业大学, 2019.
MING C. Identification of transcription factor gene BES1/BZR1 in maize[D]. Ya’an: Sichuan Agricultural University, 2019.DOI: 10.27345/d.cnki.gsnyu.2019.000495.
[32]
SAHA G, PARK J I, JUNG H J, et al. Molecular characterization of BZR transcription factor family and abiotic stress induced expression profiling in Brassica rapa[J]. Plant Physiol Biochem, 2015, 92:92-104.DOI:10.1016/j.plaphy.2015.04.013.
[33]
杜巧丽, 刘均霞, 陈美晴, 等. 高粱BR信号转录因子BZR1基因家族的鉴定及激素应答分析[J]. 植物保护学报, 2022, 49(3):848-856.
DU Q L, LIU J X, CHEN M Q, et al. Identification of Sorghum BR signal transcription factor BZR1 gene family and analysis of hormone response[J]. J Plant Prot, 2022, 49(3):848-856.DOI:10.13802/j.cnki.zwbhxb.2022.2020206.
[34]
WANG D Z, ZUO J H, LIU S, et al. BRI1 EMS SUPPRESSOR1 genes regulate abiotic stress and anther development in wheat (Triticum aestivum L.)[J]. Front Plant Sci, 2023,14:1219856.DOI:10.3389/fpls.2023.1219856.
[35]
陈旭, 沈春洋, 莫福磊, 等. 番茄BZR基因家族鉴定及非生物胁迫下表达模式分析[J]. 东北农业大学学报, 2021, 52(11):9-17.
CHEN X, SHEN C Y, MO F L, et al. Identification of BZR gene family in tomato and expression patterns analysis under abiotic stress[J]. J Northeast Agric Univ, 2021, 52(11):9-17.DOI:10.19720/j.cnki.issn.1005-9369.2021.11.002.
[36]
AN S M, LIU Y, SANG K Q, et al. Brassinosteroid signaling positively regulates abscisic acid biosynthesis in response to chilling stress in tomato[J]. J Integr Plant Biol, 2023, 65(1):10-24.DOI:10.1111/jipb.13356.
[37]
ZUO C L, ZHANG L, YAN X Y, et al. Evolutionary analysis and functional characterization of BZR1 gene family in celery revealed their conserved roles in brassinosteroid signaling[J]. BMC Genomics, 2022, 23(1):568.DOI:10.1186/s12864-022-08810-3.
[38]
LUO S L, ZHANG G B, ZHANG Z Y, et al. Genome-wide identification and expression analysis of BZR gene family and associated responses to abiotic stresses in cucumber (Cucumis sativus L.)[J]. BMC Plant Biol, 2023, 23(1):214.DOI:10.1186/s12870-023-04216-9.
[39]
LI Y Y, HE L L, LI J, et al. Genome-wide identification,characterization,and expression profiling of the legume BZR transcription factor gene family[J]. Front Plant Sci, 2018,9:1332.DOI:10.3389/fpls.2018.01332.
[40]
CHEN X W, WU X Y, QIU S Y, et al. Genome-wide identification and expression profiling of the BZR transcription factor gene family in Nicotiana benthamiana[J]. Int J Mol Sci, 2021, 22(19):10379.DOI:10.3390/ijms221910379.
[41]
LI H, YE K Y, SHI Y T, et al. BZR1 positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in Arabidopsis[J]. Mol Plant, 2017, 10(4):545-559.DOI:10.1016/j.molp.2017.01.004.
[42]
LIU J L, YANG R C, JIAN N, et al. Putrescine metabolism modulates the biphasic effects of brassinosteroids on canola and Arabidopsis salt tolerance[J]. Plant Cell Environ, 2020, 43(6):1348-1359.DOI:10.1111/pce.13757.
[43]
WANG X X, CHEN X D, WANG Q J, et al. MdBZR1 and MdBZR1-2 like transcription factors improves salt tolerance by regulating gibberellin biosynthesis in apple[J]. Front Plant Sci, 2019,10:1473.DOI:10.3389/fpls.2019.01473.
[44]
FUJITA M, FUJITA Y, MARUYAMA K, et al. A dehydration-induced NAC protein,RD26,is involved in a novel ABA-dependent stress-signaling pathway[J]. Plant J, 2004, 39(6):863-876.DOI:10.1111/j.1365-313X.2004.02171.x.
[45]
YE H X, LIU S Z, TANG B Y, et al. RD26 mediates crosstalk between drought and brassinosteroid signalling pathways[J]. Nat Commun, 2017,8:14573.DOI:10.1038/ncomms14573.

基金

国家自然科学基金项目(32271838)

编辑: 吴祝华
PDF(6192 KB)

Accesses

Citation

Detail

段落导航
相关文章

/