南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (2): 12-22.doi: 10.12302/j.issn.1000-2006.202403036
所属专题: 推进乡村全面振兴视域下的多功能油用树种文冠果研究
• 专题报道:推进乡村全面振兴视域下的多功能油用树种文冠果研究(执行主编 尹佟明 李维林) • 上一篇 下一篇
许慧慧(), 班卓, 王晨雪, 毕泉鑫, 刘肖娟*(
), 王利兵
收稿日期:
2024-03-27
接受日期:
2024-06-25
出版日期:
2025-03-30
发布日期:
2025-03-28
通讯作者:
*刘肖娟(liuxiaojuan@caf.ac.cn),助理研究员。作者简介:
许慧慧(xuhuihui0206@163.com)。
基金资助:
XU Huihui(), BAN Zhuo, WANG Chenxue, BI Quanxin, LIU Xiaojuan*(
), WANG Libing
Received:
2024-03-27
Accepted:
2024-06-25
Online:
2025-03-30
Published:
2025-03-28
摘要:
【目的】探究文冠果(Xanthoceras sorbifolium)Brassinazole Resistance 1(BZR1)基因家族成员的特征及其在非生物胁迫响应中的作用,为文冠果XsBZR1基因功能的研究和抗逆新品种的选育提供理论参考。【方法】利用生物信息学方法鉴定并系统分析文冠果XsBZR1基因家族;构建35S::XsBZR1-eYFP融合蛋白,对XsBZR1进行亚细胞定位分析;通过实时荧光定量PCR技术分析XsBZR1基因在非生物胁迫下的表达模式;构建XsBZR1- 9基因的过表达载体并转化到拟南芥(Arabidopsis thaliana)中,观察转基因株系与野生型植株在盐胁迫处理下的生长情况。【结果】①在文冠果基因组中共鉴定出9个BZR1基因,分别命名为XsBZR1-1—XsBZR1-9,这些基因不均匀地分布在6条染色体上。②系统进化和共线性分析表明,XsBZR1蛋白与双子叶植物的BZR 1转录因子亲缘关系更为密切。③XsBZR1基因的启动子区域具有大量的光响应、激素响应元件以及胁迫应答响应元件。④亚细胞定位结果和预测结果一致,9个XsBZR1均定位于细胞核。⑤qRT-PCR分析表明,9个XsBZR1基因在不同的非生物胁迫下表现出不同的表达模式。除XsBZR1-7外,其余XsBZR1基因在低温胁迫下3 h时迅速上调表达;盐胁迫下XsBZR1的表达量呈现较大的差异性,XsBZR1-3/4/5/7的表达受到盐胁迫的显著抑制,而XsBZR1-1和XsBZR1-9在盐胁迫处理9 h时表达量提高到约20倍;XsBZR1-3/7/8/9在干旱处理9 h时表达量提高到2倍以上,而其余XsBZR1在干旱处理下的表达水平变化不大;9个XsBZR1均受到ABA的诱导表达,其中XsBZR1-8在ABA处理9 h时表达量提高到35倍。⑥在拟南芥中过表达XsBZR1-9发现,转基因植株在盐胁迫处理后的主根长度显著高于野生型植株。【结论】XsBZR1家族成员参与了文冠果非生物胁迫响应,过表达XsBZR1-9显著提高植物对盐胁迫的耐受性,这为进一步分析XsBZR1基因在文冠果抗逆机制中的作用奠定了基础。
中图分类号:
许慧慧,班卓,王晨雪,等. 文冠果BZR1基因家族鉴定及功能分析[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 12-22.
XU Huihui, BAN Zhuo, WANG Chenxue, BI Quanxin, LIU Xiaojuan, WANG Libing. The identification and functional analysis of BZR1 genes in yellowhorn[J].Journal of Nanjing Forestry University (Natural Science Edition), 2025, 49(2): 12-22.DOI: 10.12302/j.issn.1000-2006.202403036.
表1
引物序列表"
基因名称 gene name | 正向引物序列(5'—) forward primer sequence | 反向引物序列(3'—) reverse primer sequence | 用途 application |
---|---|---|---|
XsBZR1- 1 | CTCGGTGGCAATGAAGTT | GCAGAGAAGTTGGTTGTTG | qRT-PCR引物 |
XsBZR1- 2 | AGAAGAGAAGGAGAGGACAA | ACGATGAAGTTACCATAGCA | |
XsBZR1- 3 | ATGCGATGAGTCTGATACAT | TCCATTCCTTCCATTCCTAC | |
XsBZR1- 4 | TGTGGAGCGAATGGATATAG | AACTGGAGCACTGATGGA | |
XsBZR1- 5 | AGAAGACGGCACCACTTA | AGGACTCGGATTGTAAGATG | |
XsBZR1- 6 | CTGGTGGTGGAGGAGATT | CCGCCGTATAAGTAGAGTG | |
XsBZR1- 7 | GAGGCTGGTTGGATTGTT | CGCACTGATGTTCGTAGA | |
XsBZR1- 8 | AATGTGGTGGATGAGAAGAA | CTTGAAGCCTGGCGAATA | |
XsBZR1- 9 | CCTGTAGAGCGAATGGATAT | AACTGGAGCACTGATGGA | |
XsActin | AGAGATTCCGTTGCCCAGAA | CCACCACTGAGCACAATGTT | |
AtActin | TTACCCGATGGGCAAGTC | GCTCATACGGTCAGCGATAC | |
XsBZR1- 1 | ATGATTACAATCAGCAACAT | AGCCAGCAGATCGCCCACTA | XsBZR1 基因克隆引物 |
XsBZR1- 2 | ATGGCAACAGATATGCAGAA | CACCTGGAGATCAAGAACTG | |
XsBZR1- 3 | ATGACGTCTGATGGGGCGAC | ACCCTGAGTCTTCCCAGTTC | |
XsBZR1- 4 | ATGACGTCAGGATCGAGACT | GCCAGAAAGCCGCTGCCTAC | |
XsBZR1- 5 | ATGACGTCGGGTACGAGAAT | TCTGGTTTTAGAGTTTCCCA | |
XsBZR1- 6 | ATGTTTCCAATCAGAAAATT | TATTGTACGGCGTGGAGGAG | |
XsBZR1- 7 | ATGACAGCGGGAGGATCAGG | TCCGCGCGTCTTGGTACTAC | |
XsBZR1- 8 | ATGGGGAAAGAGAATGTGGT | GTCTTCATCTCCTGATTGAT | |
XsBZR1- 9 | ATGACGTCAGGATCGAGGTT | CCTGGTCCTTGAGCTCCCAA |
表2
文冠果BZR1基因家族及编码蛋白特性"
基因名称 gene name | 基因ID gene ID | 蛋白序列 长度/aa length | 分子质量 /ku molecular weight | 等电点 pI | 总平均 疏水指数 GRAVY | 保守结构域 domain | 亚细胞号 subcellular localization | 染色体号 chromosome No. | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
XsBZR1-1 | Xsorbifolium001562.1 | 653 | 73.73 | 5.62 | -0.403 | BES1_N Glyco_hydro_14 | 细胞核 | 1 | ||||||||
XsBZR1-2 | Xsorbifolium002147.2 | 702 | 78.46 | 5.40 | -0.364 | BES1_N Glyco_hydro_14 | 细胞核 | 1 | ||||||||
XsBZR1-3 | Xsorbifolium010436.1 | 316 | 34.45 | 8.39 | -0.601 | BES1_N | 细胞核 | 6 | ||||||||
XsBZR1-4 | Xsorbifolium011852.2 | 341 | 36.84 | 8.59 | -0.579 | BES1_N | 细胞核 | 7 | ||||||||
XsBZR1-5 | Xsorbifolium012965.1 | 327 | 34.96 | 8.60 | -0.627 | BES1_N | 细胞核 | 7 | ||||||||
XsBZR1- 6 | Xsorbifolium013243.1 | 226 | 23.89 | 10.21 | -0.365 | BES1_N | 细胞核 | 7 | ||||||||
XsBZR1- 7 | Xsorbifolium015469.1 | 328 | 35.46 | 8.58 | -0.547 | BES1_N | 细胞核 | 9 | ||||||||
XsBZR1- 8 | Xsorbifolium019507.1 | 136 | 15.89 | 9.59 | -1.113 | BES1_N | 细胞核 | 12 | ||||||||
XsBZR1- 9 | Xsorbifolium024342.1 | 325 | 35.05 | 8.94 | -0.619 | BES1_N | 细胞核 | 15 |
图7
盐胁迫对野生型和XsBZR1-9转基因拟南芥株系种子萌发率和主根长的影响 a.转基因拟南芥中XsBZR1-9的表达量检测expression level of XsBZR1-9 in transgenic Arabidopsis;b 、c、d.1/2 MS和100 mmol/L NaCl培养基上生长7 d的发芽情况及种子萌发率phenotype growth and seed germination rate under 1/2 MS and 100 mmol/L NaCl treatments;e、f.1/2 MS和100 mmol/L NaCl处理下的主根长度the main root length under 1/2 MS and 100 mmol/L NaCl treatments。WT.野生型拟南芥株系wild type Arabidopsis thaliana; OE1、OE2、 OE3. XsBZR1-9转基因拟南芥XsBZR1-9 transgenic Arabidopsis thaliana strains。"
[20] | MA Y X. Variation of seed characteristics and selection of superior rootstock provenance of Xanthoceras sorbifolia Bunge[D]. Hohhot: Inner Mongolia Agricultural University, 2021.DOI: 10.27229/d.cnki.gnmnu.2021.000047. |
[21] | 刘志. 文冠果WRKY转录因子家族的鉴定及非生物胁迫响应模式分析[D]. 哈尔滨: 东北林业大学, 2020. |
LIU Z. Identification of WRKY transcription factor family in Xanthoceras sorbifolia Bunge and analysis of abiotic stress response pattern[D].Harbin: Northeast Forestry University, 2020.DOI: 10.27009/d.cnki.gdblu.2020.000390. | |
[22] | 常巧颖. 文冠果bZIP转录因子家族鉴定和非生物胁迫应答模式分析[D]. 哈尔滨: 东北林业大学, 2020. |
CHANG Q Y. Identification of bZIP transcription factor family in Xanthoceras sorbifolia Bunge and analysis of abiotic stress response pattern[D].Harbin: Northeast Forestry University, 2020.DOI: 10.27009/d.cnki.gdblu.2020.000536. | |
[23] | 杨娟, 姜阳明, 周芳, 等. PEG模拟干旱胁迫对不同抗旱性玉米品种苗期形态与生理特性的影响[J]. 作物杂志, 2021(1):82-89. |
YANG J, JIANG Y M, ZHOU F, et al. Effects of PEG simulated drought stress on seedling morphology and physiological characteristics of different drought-resistance maize varieties[J]. Crops, 2021(1):82-89.DOI:10.16035/j.issn.1001-7283.2021.01.012. | |
[24] | BI Q X, WANG M K, LI J, et al. The phased chromosome-scale genome of yellowhorn sheds light on the mechanism of petal color change[J]. Hortic Plant J, 2023, 9(6):1193-1206.DOI:10.1016/j.hpj.2023.05.010. |
[25] | LANG Y H, LIU Z. Basic Helix-Loop-Helix (bHLH) transcription factor family in Yellow horn (Xanthoceras sorbifolia Bunge):genome-wide characterization,chromosome location,phylogeny,structures and expression patterns[J]. Int J Biol Macromol, 2020, 160:711-723.DOI:10.1016/j.ijbiomac.2020.05.253. |
[26] | 周晔, 赵璇, 王璐, 等. 植物BZR家族基因调控非生物胁迫应答和生长发育的研究进展[J]. 中国油料作物学报, 2020, 42(4):499-511. |
ZHOU Y, ZHAO X, WANG L, et al. Research advances on plant BZR family genes in regulating abiotic stress response and development[J]. Chin J Oil Crop Sci, 2020, 42(4):499-511.DOI:10.19802/j.issn.1007-9084.2020163. | |
[27] | 王黎明, 杨瑞珍, 孙加强. 油菜素内酯调控作物农艺性状和非生物胁迫响应的研究进展[J]. 生物工程学报, 2022, 38(1):34-49. |
WANG L M, YANG R Z, SUN J Q. Regulation of crop agronomic traits and abiotic stress responses by brassinosteroids:a review[J]. Chin J Biotechnol, 2022, 38(1):34-49.DOI:10.13345/j.cjb.210236. | |
[28] | YANG J, WU Y, LI L, et al. Comprehensive analysis of the BES1 gene family and its expression under abiotic stress and hormone treatment in Populus trichocarpa[J]. Plant Physiol Biochem, 2022, 173:1-13.DOI:10.1016/j.plaphy.2022.01.019. |
[29] | 尹魁林, 程莎莎, 艾长丰, 等. 枣BZR基因家族的鉴定及其在果实发育中的表达分析[J/OL]. 分子植物育种:1-13[2024-03-26]. |
YIN K L, CHENG S S, AI C F, et al. Genome-wide identification of ZjBZR gene family and expression analysis in jujube fruit[J/OL]. Molecular Plants Breeding:1-13. [2024-03-26]. . | |
[30] | FENG W Q, ZHANG H, CAO Y, et al. Maize ZmBES1/BZR1-1 transcription factor negatively regulates drought tolerance[J]. Plant Physiol Biochem, 2023,205:108188.DOI:10.1016/j.plaphy.2023.108188. |
[31] | 明川. 玉米BES1/BZR1转录因子基因鉴定[D]. 雅安: 四川农业大学, 2019. |
MING C. Identification of transcription factor gene BES1/BZR1 in maize[D]. Ya’an: Sichuan Agricultural University, 2019.DOI: 10.27345/d.cnki.gsnyu.2019.000495. | |
[32] | SAHA G, PARK J I, JUNG H J, et al. Molecular characterization of BZR transcription factor family and abiotic stress induced expression profiling in Brassica rapa[J]. Plant Physiol Biochem, 2015, 92:92-104.DOI:10.1016/j.plaphy.2015.04.013. |
[33] | 杜巧丽, 刘均霞, 陈美晴, 等. 高粱BR信号转录因子BZR1基因家族的鉴定及激素应答分析[J]. 植物保护学报, 2022, 49(3):848-856. |
DU Q L, LIU J X, CHEN M Q, et al. Identification of Sorghum BR signal transcription factor BZR1 gene family and analysis of hormone response[J]. J Plant Prot, 2022, 49(3):848-856.DOI:10.13802/j.cnki.zwbhxb.2022.2020206. | |
[1] | YANG Y Z, CHU C C, QIAN Q, et al. Leveraging brassinosteroids towards the next green revolution[J]. Trends Plant Sci, 2024, 29(1):86-98.DOI:10.1016/j.tplants.2023.09.005. |
[2] | 王孟珂, 杨晓明, 汪贵斌, 等. 外施24-表油菜素内酯(EBR)对银杏叶片发育和生理特征影响[J]. 南京林业大学学报(自然科学版), 2023, 47(4):81-87. |
WANG M K, YANG X M, WANG G B, et al. Effects of external 24-epibrassinolide (EBR) application on the development and physiological characteristics of Ginkgo biloba leaves[J]. J Nanjing For Univ (Nat Sci Ed), 2023, 47(4):81-87.DOI:10.12302/j.issn.1000-2006.202109026. | |
[3] | NOLAN T M, VUKAŠINOVIĆ N, LIU D R, et al. Brassinosteroids:multidimensional regulators of plant growth,development,and stress responses[J]. Plant Cell, 2020, 32(2):295-318.DOI:10.1105/tpc.19.00335.. |
[4] | SHE J, HAN Z F, KIM T W, et al. Structural insight into brassinosteroid perception by BRI1[J]. Nature, 2011, 474(7352):472-476.DOI:10.1038/nature10178. |
[5] | NAM K H, LI J M. BRI1/BAK1,a receptor kinase pair mediating brassinosteroid signaling[J]. Cell, 2002, 110(2):203-212.DOI:10.1016/s0092-8674(02)00814-0. |
[6] | WANG Z Y, NAKANO T, GENDRON J, et al. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis[J]. Dev Cell, 2002, 2(4):505-513.DOI:10.1016/s1534-5807(02)00153-3. |
[7] | NOSAKI S, MIYAKAWA T, XU Y Q, et al. Structural basis for brassinosteroid response by BIL1/BZR1[J]. Nat Plants, 2018, 4(10):771-776.DOI:10.1038/s41477-018-0255-1. |
[8] | SUN Y, FAN X Y, CAO D M, et al. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis[J]. Dev Cell, 2010, 19(5):765-777.DOI:10.1016/j.devcel.2010.10.010. |
[9] | YU X F, LI L, ZOLA J, et al. A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana[J]. Plant J, 2011, 65(4):634-646.DOI:10.1111/j.1365-313X.2010.04449.x. |
[10] | REINHOLD H, SOYK S, SIMKOVÁ K, et al. β-amylase-like proteins function as transcription factors in Arabidopsis,controlling shoot growth and development[J]. Plant Cell, 2011, 23(4):1391-1403.DOI:10.1105/tpc.110.081950. |
[34] | WANG D Z, ZUO J H, LIU S, et al. BRI1 EMS SUPPRESSOR1 genes regulate abiotic stress and anther development in wheat (Triticum aestivum L.)[J]. Front Plant Sci, 2023,14:1219856.DOI:10.3389/fpls.2023.1219856. |
[35] | 陈旭, 沈春洋, 莫福磊, 等. 番茄BZR基因家族鉴定及非生物胁迫下表达模式分析[J]. 东北农业大学学报, 2021, 52(11):9-17. |
CHEN X, SHEN C Y, MO F L, et al. Identification of BZR gene family in tomato and expression patterns analysis under abiotic stress[J]. J Northeast Agric Univ, 2021, 52(11):9-17.DOI:10.19720/j.cnki.issn.1005-9369.2021.11.002. | |
[36] | AN S M, LIU Y, SANG K Q, et al. Brassinosteroid signaling positively regulates abscisic acid biosynthesis in response to chilling stress in tomato[J]. J Integr Plant Biol, 2023, 65(1):10-24.DOI:10.1111/jipb.13356. |
[37] | ZUO C L, ZHANG L, YAN X Y, et al. Evolutionary analysis and functional characterization of BZR1 gene family in celery revealed their conserved roles in brassinosteroid signaling[J]. BMC Genomics, 2022, 23(1):568.DOI:10.1186/s12864-022-08810-3. |
[38] | LUO S L, ZHANG G B, ZHANG Z Y, et al. Genome-wide identification and expression analysis of BZR gene family and associated responses to abiotic stresses in cucumber (Cucumis sativus L.)[J]. BMC Plant Biol, 2023, 23(1):214.DOI:10.1186/s12870-023-04216-9. |
[39] | LI Y Y, HE L L, LI J, et al. Genome-wide identification,characterization,and expression profiling of the legume BZR transcription factor gene family[J]. Front Plant Sci, 2018,9:1332.DOI:10.3389/fpls.2018.01332. |
[40] | CHEN X W, WU X Y, QIU S Y, et al. Genome-wide identification and expression profiling of the BZR transcription factor gene family in Nicotiana benthamiana[J]. Int J Mol Sci, 2021, 22(19):10379.DOI:10.3390/ijms221910379. |
[41] | LI H, YE K Y, SHI Y T, et al. BZR1 positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in Arabidopsis[J]. Mol Plant, 2017, 10(4):545-559.DOI:10.1016/j.molp.2017.01.004. |
[42] | LIU J L, YANG R C, JIAN N, et al. Putrescine metabolism modulates the biphasic effects of brassinosteroids on canola and Arabidopsis salt tolerance[J]. Plant Cell Environ, 2020, 43(6):1348-1359.DOI:10.1111/pce.13757. |
[43] | WANG X X, CHEN X D, WANG Q J, et al. MdBZR1 and MdBZR1-2 like transcription factors improves salt tolerance by regulating gibberellin biosynthesis in apple[J]. Front Plant Sci, 2019,10:1473.DOI:10.3389/fpls.2019.01473. |
[11] | YIN Y H, VAFEADOS D, TAO Y, et al. A new class of transcription factors mediates brassinosteroid: regulated gene expression in Arabidopsis[J]. Cell, 2005, 120(2):249-259.DOI:10.1016/j.cell.2004.11.044. |
[12] | THALMANN M, COIRO M, MEIER T, et al. The evolution of functional complexity within the β-amylase gene family in land plants[J]. BMC Evol Biol, 2019, 19(1):66.DOI:10.1186/s12862-019-1395-2. |
[13] | 沈春洋. 番茄BZR基因家族生物信息学分析及抗逆基因功能鉴定[D]. 哈尔滨: 东北农业大学, 2022. |
SHEN C Y. Bioinformatics analysis of tomato BZR gene family and functional identification of stress-resistant genes[D].Harbin: Northeast Agricultural University, 2022.DOI: 10.27010/d.cnki.gdbnu.2022.000291. | |
[14] | CAO X, KHALIQ A, LU S, et al. Genome-wide identification and characterization of the BES1 gene family in apple (Malus domestica)[J]. Plant Biol, 2020, 22(4):723-733.DOI:10.1111/plb.13109. |
[15] | CUI X Y, GAO Y, GUO J, et al. BES/BZR transcription factor TaBZR2 positively regulates drought responses by activation of TaGST1[J]. Plant Physiol, 2019, 180(1):605-620.DOI:10.1104/pp.19.00100. |
[16] | JIA C G, ZHAO S K, BAO T T, et al. Tomato BZR/BES transcription factor SlBZR1 positively regulates BR signaling and salt stress tolerance in tomato and Arabidopsis[J]. Plant Sci, 2021,302:110719.DOI:10.1016/j.plantsci.2020.110719. |
[17] | SUN Z T, LIU X Z, ZHU W D, et al. Molecular traits and functional exploration of BES1 gene family in plants[J]. Int J Mol Sci, 2022, 23(8):4242.DOI:10.3390/ijms23084242. |
[18] | ZHAO Y, LIU X J, WANG M K, et al. Transcriptome and physiological analyses provide insights into the leaf epicuticular wax accumulation mechanism in yellowhorn[J]. Hortic Res, 2021, 8(1):134.DOI:10.1038/s41438-021-00564-5. |
[19] | YU H Y, FAN S Q, BI Q X, et al. Seed morphology,oil content and fatty acid composition variability assessment in yellow horn (Xanthoceras sorbifolium Bunge) germplasm for optimum biodiesel production[J]. Ind Crops Prod, 2017, 97:425-430.DOI:10.1016/j.indcrop.2016.12.054. |
[20] | 麻云霞. 文冠果种子特性变异及优良砧用种源选择[D]. 呼和浩特: 内蒙古农业大学, 2021. |
[44] | FUJITA M, FUJITA Y, MARUYAMA K, et al. A dehydration-induced NAC protein,RD26,is involved in a novel ABA-dependent stress-signaling pathway[J]. Plant J, 2004, 39(6):863-876.DOI:10.1111/j.1365-313X.2004.02171.x. |
[45] | YE H X, LIU S Z, TANG B Y, et al. RD26 mediates crosstalk between drought and brassinosteroid signalling pathways[J]. Nat Commun, 2017,8:14573.DOI:10.1038/ncomms14573. |
[1] | 戚亚, 王改萍, 轩辕欣彤, 彭大庆, 李硕民, 李守科, 曹福亮. 文冠果药用优良无性系评价[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 38-44. |
[2] | 李雨嫣, 敖妍, 赵磊磊, 徐向银, 陈育红, 娜日苏. 文冠果果实生长发育与内含物变化规律[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 31-37. |
[3] | 张薇, 李麟坤, 梁重钧, 王利兵. 文冠果XsWRI1基因克隆、转录活性及组织特异性表达分析[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 23-30. |
[4] | 宗建伟, 李柽, 张静, 杨雨华. 接种丛枝菌根真菌对盐胁迫下文冠果生长及生理特性的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(4): 168-176. |
[5] | 苏泾涵, 王改萍, 刘玉华, 戚亚, 彭大庆, 李守科, 曹福亮. 叶用文冠果总多酚提取工艺及抗氧化活性分析[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 129-137. |
[6] | 杨素芝, 段磊, 张丽, 冯昭辉, 陆昕, 韩立华, 白玉茹, 乌志颜. 文冠果新品种‘蒙冠1号’和‘蒙冠2号’[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 262-264. |
[7] | 麻周德, 张焕朝, 曹福亮, 乔禹凡, 李守科, 赵祥树. 叶面喷施中微肥对文冠果的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 95-100. |
[8] | 王媛媛, 刘百超, 姜波, 王丹妮, 高彩球. Th2CysPrx基因提高酿酒酵母多种胁迫耐受性研究[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 87-94. |
[9] | 张毅, 敖妍, 刘觉非, 赵磊磊, 张永明. 文冠果物候期对环境因子的响应[J]. 南京林业大学学报(自然科学版), 2019, 43(5): 30-36. |
[10] | 张宁,黄曜曜,敖妍,苏淑钗,刘金凤,张行杰,刘觉非. 文冠果花芽分化过程及内源激素动态变化[J]. 南京林业大学学报(自然科学版), 2019, 43(04): 33-42. |
[11] | 李蕾蕾,孙丰坤,董恒,詹亚光,杨丹,曾凡锁. 白桦BpGT14基因表达模式及对非生物 胁迫诱导的响应[J]. 南京林业大学学报(自然科学版), 2016, 40(02): 41-47. |
[12] | 宁坤,宋鑫,李慧玉. 柽柳 GF14基因的克隆与表达分析[J]. 南京林业大学学报(自然科学版), 2016, 40(02): 33-40. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||