南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (6): 51-61.doi: 10.12302/j.issn.1000-2006.202404005
郝兆东(), 马筱筱, 王丹丹, 陆叶, 施季森, 陈金慧*()
收稿日期:
2024-04-02
修回日期:
2024-05-21
出版日期:
2024-11-30
发布日期:
2024-12-10
通讯作者:
*陈金慧(chenjh@njfu.edu.cn),教授。作者简介:
郝兆东(haozd@njfu.edu.cn),博士,讲师。
基金资助:
HAO Zhaodong(), MA Xiaoxiao, WANG Dandan, LU Ye, SHI Jisen, CHEN Jinhui*()
Received:
2024-04-02
Revised:
2024-05-21
Online:
2024-11-30
Published:
2024-12-10
摘要:
【目的】PIN-FORMED(PIN)属于生长素转运蛋白,能够介导生长素的极性运输,在植物的生长和发育过程中扮演着关键角色。本研究旨在解析鹅掌楸PIN1基因对植物生长和发育的影响。【方法】通过蛋白序列同源比对、系统发育树构建以及蛋白结构域预测的方法,鉴定鹅掌楸中PIN1的同源蛋白LcPIN1s。然后,通过转录组数据解析LcPIN1s基因的组织特异性表达情况,并通过实时荧光定量逆转录PCR(RT-qPCR)方法研究LcPIN1s在不同苗龄再生植株的根、茎和叶组织中的表达动态。此外,通过转录组数据解析LcPIN1s基因在低温、高温以及干旱胁迫条件下的时序动态表达,并进一步利用RT-qPCR方法研究LcPIN1s响应干旱胁迫与内源ABA合成之间的关联。最后,通过克隆鹅掌楸叶片中高表达的PIN1同源基因LcPIN1a,构建由CaMV35S启动子驱动的过表达载体(35S:LcPIN1a),通过异源转化拟南芥(Arabidopsis thaliana)和同源转化杂种鹅掌楸(Liriodendron × sinoamericanum),筛选并获得的异源过表达(LcPIN1a-HO)和同源过表达(LcPIN1a-OE)阳性再生植株,分别进行生长和发育性状的测定和分析。【结果】通过生物信息学方法在鹅掌楸基因组中成功鉴定到了3个PIN1同源蛋白,分别命名为LcPIN1a、LcPIN1b和LcPIN1c。组织特异性表达分析显示,LcPIN1a主要在叶片中高表达,而LcPIN1b和LcPIN1c主要在茎和根以及成年后的雌蕊中高表达。另外,鹅掌楸3个PIN1同源基因均受到低温(4 ℃)和干旱(质量分数15% PEG6000)处理的诱导而表现出先上调后下调的表达模式,但在高温(40 ℃)胁迫下则会急剧下调表达。利用聚乙二醇(PEG)、脱落酸(ABA)以及ABA合成抑制剂氟啶酮(Flu)处理,发现LcPIN1s在响应干旱诱导时表现出不同的模式,即LcPIN1a不依赖于内源ABA的合成,而LcPIN1b和LcPIN1c则依赖于内源ABA的合成。最后,通过对拟南芥异源过表达株系(LcPIN1a-HO)再生植株的生长性状统计分析发现,其在根长和株高方面均显著低于野生型,同时雄蕊数发生显著变异,从野生型的6枚雄蕊变为以5枚为主。在杂交鹅掌楸过表达株系(LcPIN1a-OE)中,其体胚成苗率显著降低,并且成苗后的再生植株在根长和株高方面均显著低于野生型,同时根系结构发生明显变化,主根不明显。【结论】鹅掌楸PIN1蛋白在植株的营养和生殖生长方面发挥重要作用,过量表达不利于植株的正常生长和发育。
中图分类号:
郝兆东,马筱筱,王丹丹,等. 鹅掌楸LcPIN1a基因的克隆及其对植株生长发育的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(6): 51-61.
HAO Zhaodong, MA Xiaoxiao, WANG Dandan, LU Ye, SHI Jisen, CHEN Jinhui. Cloning of the Liriodendron chinense LcPIN1a genes and its effect on plant growth and development[J].Journal of Nanjing Forestry University (Natural Science Edition), 2024, 48(6): 51-61.DOI: 10.12302/j.issn.1000-2006.202404005.
表1
本研究所用引物"
引物名称 primer name | 引物序列 primer sequence | 用途 purpose |
---|---|---|
LcPIN1a-qF | AAGAGCCGCAAGAAGAGT | 实时荧光 定量 |
LcPIN1a-qR | TGTTTGGATTACGGATTAGC | |
LcPIN1b-qF | TACCCGGCACCAAATCCAG | |
LcPIN1b-qR | CGCCTATGTATTCTTGATTCCC | |
LcPIN1c-qF | GGGAGGAACACGAGCAAT | |
LcPIN1c-qR | CTTCTTCTTCGCCACAGC | |
LcPIN1a-pF | ATGATCACTCTCTCCGACTTC | 基因克隆 |
LcPIN1a-pR | CAGCCCAAGGAAAATGTAGTAAAC | |
LcPIN1a-vF | gagagaacacgggggactctaga ATGATCACTCTCTCCGACTTC | 过表达 载体构建 |
LcPIN1a-vR | gatcggggaaattcgagctc CAGCCCAAGGAAAATGTAGTAAAC | |
LcPIN1a-sF | CAGGTCCCCAGATTAGCCTT | 载体验证 |
LcPIN1a-sR | ACATGAAGCTTACCGTCCTCC |
图1
鹅掌楸LcPIN1基因鉴定及其生物信息学分析 a. 系统发育树。外群为小立碗藓(P. patens),bootstrap值只显示高于50%的。Phylogenetic tree.P. patens PIN proteins are set as the outgroup. The bootstrap values less than 50% are not indicated。b. 拟南芥(A. thaliana)、水稻(O. sativa)及鹅掌楸(L. chinense)PIN1同源蛋白的多序列比对,白色箭头分别为F163和Y480,黑色框为TPRXS(N/S)基序。 The multiple sequence alignment of PIN1 proteins from A. thaliana, O. sativa and L. chinense with white boxes representing F163 and Y480 and black boxes representing three TPRXS(N/S) motifs。c—e. 鹅掌楸3个PIN1同源蛋白的跨膜结构预测。 The prediction of transmembrane regions in three Liriodendron PIN1 proteins.PP.小立碗藓Physcomitrium patens;LC. 鹅掌楸Liriodendron chinense; AT.无油樟Amborella trichopoda;PT.毛果杨Populus trichocarpa;VV.葡萄Vitis vinifera;Ath. 拟南芥 Arabidopsis thalianan. OS.水稻Oryza sativa;ZM.玉米Zea mays。"
图2
鹅掌楸LcPIN1基因的组织特异性表达 a. LcPIN1基因的组织特异性表达谱,数值为log2(FPKM+1),颜色从红到蓝代表表达量从高到低。下同。The tissue-specific expression profile of LcPIN1s with the number indicating log2(FPKM+1) and red-blue color representing high-low expression level。The same below. b和c分别为3月龄幼苗和2年生大苗中LcPIN1基因在根、茎、叶组织中的实时荧光定量,每个基因均以根中的表达为对照,组间差异分析用t检验。 b and c represent RT-qPCR results of LcPIN1s in root, stem and leaf tissues of three-month and 2-years-old seedlings. For each gene, the expression level in root is compared as the control and the Student’s t-test is used to evaluate if the difference between the two group means is statistically significant.n.s.差异不显著not significant;*.P <0.05;**.P <0.01;***.P <0.001。下同。The same below."
图3
鹅掌楸LcPIN1基因在低温、干旱和高温胁迫下的动态表达 a—c. LcPIN1基因在低温、干旱和高温胁迫下的时序表达谱,数值为log2(TPM+1)。The time-series expression profile of LcPIN1s with the number indicating log2(TPM+1)。d—f. LcPIN1基因在脱落酸、聚乙二醇以及聚乙二醇和氟啶酮混合处理下的实时荧光定量,每个基因均以0 h即未处理为对照,组间差异分析用t检验。RT-qPCR results of LcPIN1s under ABA, PEG, PEG and fluridone treatments. For each gene, the expression level in 0 h, i.e., non-treatment group, is compared as the control and the Student’s t-test is used to evaluate if the difference between the two group means is statistically significant."
图4
LcPIN1a基因异源过表达对拟南芥营养生长的影响 a. 异源过表达株系中的LcPIN1a基因的实时荧光定量。The RT-qPCR results of LcPIN1a gene in WT and three LcPIN1a-HO lines. b和c. 异源过表达LcPIN1a对拟南芥根生长的影响。The effects of heterologous overexpression of LcPIN1a on root growth in A. thaliana.d—f. 异源过表达LcPIN1a对拟南芥高生长和主茎分枝的影响。The effects of heterologous overexpression of LcPIN1a on height growth and main stem branching in A. thaliana. 白色箭头指向主茎上的分枝。组间差异分析用t检验,每个株系的统计个体数在柱状图底部。下同。The white arrow indicates the branch on the main stem of A. thaliana. The Student’s t-test is used to evaluate if the difference between the two group means is statistically significant. The number of individuals used for statistical analysis is indicated at the bottom of the bar chart. The same below."
图5
LcPIN1a基因异源过表达对拟南芥花器官发育的影响 a. 野生型和LcPIN1a-HO株系的花器官表型对比phenotypic comparison of flower organs between WT and LcPIN1a-HO lines。b和c. 异源过表达LcPIN1a基因对拟南芥雄蕊数目的影响。b图中组间差异分析用t检验,c图中期望比例分析用卡方检验。 The effects of heterologous overexpression of LcPIN1a on the number of stamen in A. thaliana. Student’s t-test and chi-square test are used for statistical analyses in Fig. b and c, respectively. c图柱中深色和浅色分别代表雄蕊数目为6和不为6的植株。Dark and light colors on bar chart represent plantlets with 6 or non-6 stamens, respectively."
图6
LcPIN1a基因过表达对杂交鹅掌楸生长发育的影响 a. 过表达株系中的LcPIN1a基因的实时荧光定量。The RT-qPCR results of LcPIN1a in WT and three LcPIN1a-OE lines.b和c. 过表达LcPIN1a对杂交鹅掌楸体细胞胚胎成苗率的影响。The effects of overexpression of LcPIN1a on regeneration plantlets from mature cotyledon somatic embryo in Liriodendron hybrid. d—g. 过表达LcPIN1a对杂交鹅掌楸幼苗生长发育的影响。组间差异分析用t检验。The effects of overexpression of LcPIN1a on growth and development of seedlings in Liriodendron hybrid. The Student’s t-test is used to evaluate if the difference between the two group means is statistically significant."
[1] | ZHAO Y D. Auxin biosynthesis and its role in plant development[J]. Annu Rev Plant Biol, 2010,61:49-64.DOI: 10.1146/annurev-arplant-042809-112308. |
[2] | FUKUI K, HAYASHI K I. Manipulation and sensing of auxin metabolism,transport and signaling[J]. Plant Cell Physiol, 2018, 59(8):1500-1510.DOI: 10.1093/pcp/pcy076. |
[3] | NARAMOTO S. Polar transport in plants mediated by membrane transporters:focus on mechanisms of polar auxin transport[J]. Curr Opin Plant Biol, 2017, 40:8-14.DOI: 10.1016/j.pbi.2017.06.012. |
[4] | TAN S T, LUSCHNIG C, FRIML J. Pho-view of auxin:reversible protein phosphorylation in auxin biosynthesis,transport and signaling[J]. Mol Plant, 2021, 14(1):151-165.DOI: 10.1016/j.molp.2020.11.004. |
[5] | ADAMOWSKI M, FRIML J. PIN-dependent auxin transport:action,regulation,and evolution[J]. Plant Cell, 2015, 27(1):20-32.DOI: 10.1105/tpc.114.134874. |
[6] | BLILOU I, XU J, WILDWATER M, et al. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots[J]. Nature, 2005, 433(7021):39-44.DOI: 10.1038/nature03184. |
[7] | FRIML J, BENKOVÁ E, BLILOU I, et al. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis[J]. Cell, 2002, 108(5):661-673.DOI: 10.1016/s0092-8674(02)00656-6. |
[8] | GÄLWEILER L, GUAN C, MÜLLER A, et al. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue[J]. Science, 1998, 282(5397):2226-2230.DOI: 10.1126/science.282.5397.2226. |
[9] | FRIML J, VIETEN A, SAUER M, et al. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis[J]. Nature, 2003, 426(6963):147-153.DOI: 10.1038/nature02085. |
[10] | MÜLLER A, GUAN C, GÄLWEILER L, et al. AtPIN2 defines a locus of Arabidopsis for root gravitropism control[J]. EMBO J, 1998, 17(23):6903-6911.DOI: 10.1093/emboj/17.23.6903. |
[11] | FRIML J, WISNIEWSKA J, BENKOVÁ E, et al. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis[J]. Nature, 2002, 415(6873):806-809.DOI: 10.1038/415806a. |
[12] | DING Z J, WANG B J, MORENO I, et al. ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis[J]. Nat Commun, 2012,3:941.DOI: 10.1038/ncomms1941. |
[13] | SIMON S, SKŮPA P, VIAENE T, et al. PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis[J]. New Phytol, 2016, 211(1):65-74.DOI: 10.1111/nph.14019. |
[14] | OKADA K, UEDA J, KOMAKI M K, et al. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation[J]. Plant Cell, 1991, 3(7):677-684.DOI: 10.1105/tpc.3.7.677. |
[15] | GOVINDARAJU P, VERNA C, ZHU T B, et al. Vein patterning by tissue-specific auxin transport[J]. Development, 2020, 147(13):dev187666.DOI: 10.1242/dev.187666. |
[16] | NOH B, BANDYOPADHYAY A, PEER W A, et al. Enhanced gravi-and phototropism in plant mdr mutants mislocalizing the auxin efflux protein PIN1[J]. Nature, 2003, 423(6943):999-1002.DOI: 10.1038/nature01716. |
[17] | LI Y, ZHU J S, WU L L, et al. Functional divergence of PIN1 paralogous genes in rice[J]. Plant Cell Physiol, 2019, 60(12):2720-2732.DOI: 10.1093/pcp/pcz159. |
[18] | 郝日明, 贺善安, 汤诗杰, 等. 鹅掌楸在中国的自然分布及其特点[J]. 植物资源与环境, 1995, 4(1):1-6. |
HAO R M, HE S A, TANG S J, et al. Geographical distribution of Liridendron chinense in China and its significance[J]. J Plant Resour Environ, 1995, 4(1):1-6. | |
[19] | PARKS C R, MILLER N G, WENDEL J F, et al. Genetic divergence within the genus Liriodendron (Magnoliaceae)[J]. Ann Mo Bot Gard, 1983, 70(4):658.DOI: 10.2307/2398983. |
[20] | PARKS C R, WENDEL J F. Molecular divergence between Asian and north American species of Liriodendron (Magnoliaceae) with implications for interpretation of fossil floras[J]. Am J Bot, 1990, 77(10):1243.DOI: 10.2307/2444585. |
[21] | 李火根, 施季森. 杂交鹅掌楸良种选育与种苗繁育[J]. 林业科技开发, 2009, 23(3):1-5. |
LI H G, SHI J S. Breeding and propagation of Liriodendron hybrids[J]. J For Eng, 2009, 23(3):1-5.DOI: 10.3969/j.issn.1000-8101.2009.03.001. | |
[22] | 向其柏, 王章荣. 杂交马褂木的新名称:亚美马褂木[J]. 南京林业大学学报(自然科学版), 2012, 36(2):1-2. |
SHANG C B, WANG Z R. A new scientific name of hybrid Liriodendron: L. sino americanum[J]. J Nanjing For Univ (Nat Sci Ed), 2012, 36(2):1-2.DOI: 10.3969/j.issn.1000-2006.2012.02.001. | |
[23] | CHEN J H, HAO Z D, GUANG X M, et al. Liriodendron genome sheds light on angiosperm phylogeny and species-pair differentiation[J]. Nat Plants, 2019, 5(1):18-25.DOI: 10.1038/s41477-018-0323-6. |
[24] | 陈金慧, 施季森, 诸葛强, 等. 杂交鹅掌楸体细胞胚胎发生研究[J]. 林业科学, 2003, 39(4):49-53,177. |
CHEN J H, SHI J S, ZHUGE Q, et al. Studies on the somatic embryogenesis of Liriodendron hybrids (L. chinense × L. tulipifera)[J]. Sci Silvae Sin, 2003, 39(4):49-53,177.DOI: 10.3321/j.issn:1001-7488.2003.04.008. | |
[25] | LI M P, WANG D, LONG X F, et al. Agrobacterium-mediated genetic transformation of embryogenic callus in a Liriodendron hybrid (L.chinense × L.tulipifera)[J]. Front Plant Sci, 2022,13:802128.DOI: 10.3389/fpls.2022.802128. |
[26] | HU L F, WANG P K, LONG X F, et al. The PIN gene family in relic plant L.chinense:genome-wide identification and gene expression profiling in different organizations and abiotic stress responses[J]. Plant Physiol Biochem, 2021, 162:634-646.DOI: 10.1016/j.plaphy.2021.03.030. |
[27] | LI R, PAN Y, HU L F, et al. PIN3 from Liriodendron may function in inflorescence development and root elongation[J]. Forests, 2022, 13(4):568.DOI: 10.3390/f13040568. |
[28] | BERARDINI T Z, REISER L, LI D H, et al. The Arabidopsis information resource:making and mining the “gold standard” annotated reference plant genome[J]. Genesis, 2015, 53(8):474-485.DOI: 10.1002/dvg.22877. |
[29] | JOHNSON M, ZARETSKAYA I, RAYTSELIS Y, et al. NCBI BLAST:a better web interface[J]. Nucleic Acids Res, 2008, 36(Web Server issue):5-9.DOI: 10.1093/nar/gkn201. |
[30] | GOODSTEIN D M, SHU S Q, HOWSON R, et al. Phytozome:a comparative platform for green plant genomics[J]. Nucleic Acids Res, 2012, 40(Database issue):D1178-D1186.DOI: 10.1093/nar/gkr944. |
[31] | SIEVERS F, HIGGINS D G. Clustal Omega for making accurate alignments of many protein sequences[J]. Protein Sci, 2018, 27(1):135-145.DOI: 10.1002/pro.3290. |
[32] | TOGKOUSIDIS A, KOZLOV O M, HAAG J, et al. Adaptive RAxML-NG:accelerating phylogenetic inference under maximum likelihood using dataset difficulty[J]. Mol Biol Evol, 2023, 40(10):msad227.DOI: 10.1093/molbev/msad227. |
[33] | CHEN C J, WU Y, LI J W, et al. TBtools-Ⅱ:a“one for all,all for one” bioinformatics platform for biological big-data mining[J]. Mol Plant, 2023, 16(11):1733-1742.DOI: 10.1016/j.molp.2023.09.010. |
[34] | LETUNIC I, BORK P. Interactive tree of life (iTOL) v5:an online tool for phylogenetic tree display and annotation[J]. Nucleic Acids Res, 2021, 49(W1):293-296.DOI: 10.1093/nar/gkab301. |
[35] | OMASITS U, AHRENS C H, MÜLLER S, et al. Protter:interactive protein feature visualization and integration with experimental proteomic data[J]. Bioinformatics, 2014, 30(6):884-886.DOI: 10.1093/bioinformatics/btt607. |
[36] | LI T T, YUAN W G, QIU S, et al. Selection of reference genes for gene expression analysis in Liriodendron hybrids’ somatic embryogenesis and germinative tissues[J]. Sci Rep, 2021, 11(1):4957.DOI: 10.1038/s41598-021-84518-w. |
[37] | LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method[J]. Methods, 2001, 25(4):402-408.DOI: 10.1006/meth.2001.1262. |
[38] | MAVRODIEV E V, DERVINIS C, WHITTEN W M, et al. A new,simple,highly scalable,and efficient protocol for genomic DNA extraction from diverse plant taxa[J]. Appl Plant Sci, 2021, 9(3):e11413.DOI: 10.1002/aps3.11413. |
[39] | CLOUGH S J, BENT A F. Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J]. Plant J, 1998, 16(6):735-743.DOI: 10.1046/j.1365-313x.1998.00343.x. |
[40] | KRECEK P, SKUPA P, LIBUS J, et al. The PIN-FORMED (PIN) protein family of auxin transporters[J]. Genome Biol, 2009, 10(12):249.DOI: 10.1186/gb-2009-10-12-249. |
[41] | SANCHO-ANDRÉS G, SORIANO-ORTEGA E, GAO C J, et al. Sorting motifs involved in the trafficking and localization of the PIN1 auxin efflux carrier[J]. Plant Physiol, 2016, 171(3):1965-1982.DOI: 10.1104/pp.16.00373. |
[42] | MARCOTE M J, SANCHO-ANDRÉS G, SORIANO-ORTEGA E, et al. Sorting signals for PIN1 trafficking and localization[J]. Plant Signal Behav, 2016, 11(8):e1212801.DOI: 10.1080/15592324.2016.1212801. |
[43] | HUANG F, ZAGO M K, ABAS L, et al. Phosphorylation of conserved PIN motifs directs Arabidopsis PIN1 polarity and auxin transport[J]. Plant Cell, 2010, 22(4):1129-1142.DOI: 10.1105/tpc.109.072678. |
[44] | WU W H, ZHU S, XU L, et al. Genome-wide identification of the Liriodendron chinense WRKY gene family and its diverse roles in response to multiple abiotic stress[J]. BMC Plant Biol, 2022, 22(1):25.DOI: 10.1186/s12870-021-03371-1. |
[45] | WU W H, ZHU S, ZHU L M, et al. Characterization of the Liriodendron chinense MYB gene family and its role in abiotic stress response[J]. Front Plant Sci, 2021,12:641280.DOI: 10.3389/fpls.2021.641280. |
[46] | MROUE S, SIMEUNOVIC A, ROBERT H S. Auxin production as an integrator of environmental cues for developmental growth regulation[J]. J Exp Bot, 2018, 69(2):201-212.DOI: 10.1093/jxb/erx259. |
[47] | GU Z L, STEINMETZ L M, GU X, et al. Role of duplicate genes in genetic robustness against null mutations[J]. Nature, 2003, 421(6918):63-66.DOI: 10.1038/nature01198. |
[48] | TESSI T M, MAURINO V G, SHAHRIARI M, et al. AZG1 is a cytokinin transporter that interacts with auxin transporter PIN1 and regulates the root stress response[J]. New Phytol, 2023, 238(5):1924-1941.DOI: 10.1111/nph.18879. |
[49] | BAWA G, LIU Z X, WU R, et al. PIN1 regulates epidermal cells development under drought and salt stress using single-cell analysis[J]. Front Plant Sci, 2022,13:1043204.DOI: 10.3389/fpls.2022.1043204. |
[50] | ZHANG J, VANNESTE S, BREWER P B, et al. Inositol trisphosphate-induced Ca2+ signaling modulates auxin transport and PIN polarity[J]. Dev Cell, 2011, 20(6):855-866.DOI: 10.1016/j.devcel.2011.05.013. |
[51] | XU M, ZHU L, SHOU H X, et al. A PIN1 family gene,OsPIN1,involved in auxin-dependent adventitious root emergence and tillering in rice[J]. Plant Cell Physiol, 2005, 46(10):1674-1681.DOI: 10.1093/pcp/pci183. |
[52] | MRAVEC J, KUBES M, BIELACH A, et al. Interaction of PIN and PGP transport mechanisms in auxin distribution-dependent development[J]. Development, 2008, 135(20):3345-3354.DOI: 10.1242/dev.021071. |
[53] | LI K, KAMIYA T, FUJIWARA T. Differential roles of PIN1 and PIN2 in root meristem maintenance under low-B conditions in Arabidopsis thaliana[J]. Plant Cell Physiol, 2015, 56(6):1205-1214.DOI: 10.1093/pcp/pcv047. |
[54] | XU K J, SUN F L, WANG Y F, et al. The PIN1 family gene PvPIN1 is involved in auxin-dependent root emergence and tillering in switchgrass[J]. Genet Mol Biol, 2016, 39(1):62-72.DOI: 10.1590/1678-4685-GMB-2014-0300. |
[55] | GUAN L, LI Y J, HUANG K H, et al. Auxin regulation and MdPIN expression during adventitious root initiation in apple cuttings[J]. Hortic Res, 2020, 7(1):143.DOI: 10.1038/s41438-020-00364-3. |
[56] | ROTH O, YECHEZKEL S, SERERO O, et al. Slow release of a synthetic auxin induces formation of adventitious roots in recalcitrant woody plants[J]. Nat Biotechnol, 2024.DOI: 10.1038/s41587-023-02065-3. |
[1] | 尹增芳, 欧香, 陈瑶, 杨爱香, 孙李勇. 望春玉兰生物学基础研究进展与展望[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 256-262. |
[2] | 魏绪英, 张瑶, 马美霞, 姜雪茹, 陈慧婷, 吴靖, 杨玉, 蔡军火. 石蒜年生长周期内NSC及其代谢酶活性变化[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 106-114. |
[3] | 张恒, 陈锐帆, 林嘉蓓, 邓小梅, 奚如春. 微量元素在林木中的应用研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 229-239. |
[4] | 陈菊艳, 邓伦秀, 李鹤, 龙海燕, 徐超然. 遮光对贵州原产两种金花茶生长发育和生理特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 83-90. |
[5] | 万雅雯, 傅华君, 时培建, 林树燕. 变温对毛竹种子萌发及幼苗生长的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 97-106. |
[6] | 姚文静, 王茹, 林树燕, 王星, 杨蒙, 郑毅, 丁雨龙. 翠竹实生苗生长发育规律及构件生物量模型拟合研究[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 103-110. |
[7] | 贾志怡, 陈聪, 马宇萱, 李寿银, 樊斌琦, 王焱, 郝德君. 温度对香樟齿喙象生长发育的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 131-136. |
[8] | 陆叶,龙晓飞,王鹏凯,陈金慧,施季森. 基于RAD-seq技术的鹅掌楸基因组SNP标记开发[J]. 南京林业大学学报(自然科学版), 2019, 43(04): 1-7. |
[9] | 杨海燕,董珊珊,闾连飞,黄正金,吴文龙,李维林. 三个高丛蓝莓品种在南京地区的田间生长表现[J]. 南京林业大学学报(自然科学版), 2019, 43(03): 157-162. |
[10] | 时培建,刘梦菂. 鹅掌楸属植物叶片两侧对称性测量的泰勒幂法则[J]. 南京林业大学学报(自然科学版), 2019, 43(03): 145-151. |
[11] | 潘文婷,夏莘,夏良放,孙建军,武晓玉,余良富,厉月桥. 造林密度对近熟期鹅掌楸生长和材质的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(05): 46-52. |
[12] | 成铁龙,孟岩1,3,陈金慧1,3,施季森. 茉莉酸甲酯对杂交鹅掌楸体胚发育的影响[J]. 南京林业大学学报(自然科学版), 2017, 41(06): 41-46. |
[13] | 鲁路,陆叶,盛宇,郑晨,施季森,陈金慧. 不同活性炭对杂交鹅掌楸体胚发生的影响[J]. 南京林业大学学报(自然科学版), 2016, 40(02): 59-64. |
[14] | 赵亚琦,吕言,张文军,魏继福,陈金慧,施季森,成铁龙. 鹅掌楸树叶和树皮提取物的抑菌活性研究[J]. 南京林业大学学报(自然科学版), 2016, 40(02): 76-80. |
[15] | 石江涛,王丰,骆嘉言. 杂交鹅掌楸应力木解剖特征及光谱分析[J]. 南京林业大学学报(自然科学版), 2015, 39(03): 125-129. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||