南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (6): 71-78.doi: 10.12302/j.issn.1000-2006.202404014
翟学昌1(), 彭丽1, 颜海飞2,*(
), 朱柯帆3, 张淑燕2,4, 张彩云5, 鲁显楷2
收稿日期:
2024-04-10
修回日期:
2024-09-05
出版日期:
2024-11-30
发布日期:
2024-12-10
通讯作者:
*颜海飞(yanhaifei@scbg.ac.cn),副研究员。作者简介:
翟学昌(xuechangzhai@163.com),副教授。
基金资助:
ZHAI Xuechang1(), PENG Li1, YAN Haifei2,*(
), ZHU Kefan3, ZHANG Shuyan2,4, ZHANG Caiyun5, LU Xiankai2
Received:
2024-04-10
Revised:
2024-09-05
Online:
2024-11-30
Published:
2024-12-10
摘要:
【目的】发掘我国重要资源植物黑老虎(Kadsura coccinea)的叶绿体基因组高变异区域及SSR变异位点,为其遗传多样性及种质资源评估奠定基础。【方法】获取5个黑老虎个体的叶绿体基因组,通过基因注释,采用生物信息学方法开展核苷酸多态性、简单重复序列(simple sequarce repeat,SSR)分析,并以2个五味子属植物为外类群分析南五味子属的系统发育关系。【结果】黑老虎完整叶绿体基因组为典型的四分体环状结构,长度为145 413~145 903 bp。其中,大单拷贝区的长度范围为94 457~94 757 bp,小单拷贝区的长度为18 032~18 047 bp,重复区为16 431~16 552 bp。黑老虎叶绿体基因组编码125个基因,蛋白编码基因、tRNA基因、rRNA基因分别为82、35、8个;总G(鸟嘌呤)和C(胞嘧啶)的碱基数占总碱基数的比例(GC占比)为39.7%。采用滑动窗口法分析发现黑老虎叶绿体基因组上petN-psbM和trnS-GCU-trnG-UCC具有很高的核苷酸多态性(Pi > 0.03)。该物种叶绿体基因组上共有212个SSR位点,其中24个SSR位点在5个黑老虎个体间存在多态变异,具有应用前景。系统发育分析表明,此次研究中黑老虎个体聚成一支,与同属其他物种关系较远。【结论】本研究首次系统比较了多个黑老虎个体的叶绿体基因组,发掘出基因组内的高变异区域及变异SSR位点,为其遗传多样性及种质资源评估奠定了基础。
中图分类号:
翟学昌,彭丽,颜海飞,等. 资源植物黑老虎的比较叶绿体基因组学研究[J]. 南京林业大学学报(自然科学版), 2024, 48(6): 71-78.
ZHAI Xuechang, PENG Li, YAN Haifei, ZHU Kefan, ZHANG Shuyan, ZHANG Caiyun, LU Xiankai. Comparative chloroplast genomics of the important resource plant Kadsura coccinea[J].Journal of Nanjing Forestry University (Natural Science Edition), 2024, 48(6): 71-78.DOI: 10.12302/j.issn.1000-2006.202404014.
表1
南五味子属物种的叶绿体基因组数据"
编号 No. | 物种 species | 总长/bp genome size | 大单拷贝 区长度/bp LSC size | 重复区 长度/bp IR size | 小单拷贝区 长度/bp SSC size | GC占比/% GC proportion | 总基因数 gene number | 蛋白质 编码基因数 number of protein- coding genes | rRNA 基因数 number of rRNA genes | tRNA 基因数 number of tRNA genes |
---|---|---|---|---|---|---|---|---|---|---|
HLH-1A | 黑老虎 | 145 617 | 94 481 | 16 552 | 18 032 | 39.7 | 125 | 82 | 8 | 35 |
HLH-2A | 黑老虎 | 145 617 | 94 481 | 16 552 | 18 032 | 39.7 | 125 | 82 | 8 | 35 |
MN480469 | 黑老虎 | 145 608 | 94 457 | 16 552 | 18 047 | 39.7 | 125 | 82 | 8 | 35 |
MT934443 | 黑老虎 | 145 413 | 94 511 | 16 431 | 18 040 | 39.7 | 125 | 82 | 8 | 35 |
NC_057265 | 中泰南五味子 | 145 903 | 94 757 | 16 552 | 18 042 | 39.7 | 125 | 82 | 8 | 35 |
NC_057266 | 异形南五味子 | 153 289 | 85 774 | 24 657 | 18 201 | 39.6 | 129 | 84 | 8 | 37 |
NC_050348 | 异形南五味子 | 153 201 | 85 774 | 24 656 | 18 115 | 39.6 | 129 | 84 | 8 | 37 |
MW801021 | 南五味子 | 153 106 | 85 593 | 24 670 | 18 173 | 39.6 | 129 | 84 | 8 | 37 |
表2
黑老虎叶绿体基因组基因分类信息"
类别category | 基因功能gene function | 基因gene |
---|---|---|
光合作用相关 photosynthesis | 二磷酸核酮糖羧化酶大亚基 | rbcL |
光系统Ⅰ | psaA、psaB、psaC、psaI、psaJ | |
光系统Ⅱ | psbA、psbB、psbC、psbD、psbE、psbF、psbH、psbI、psbJ、 psbK、psbL、psbM、psbN、psbT、psbZ | |
ATP合酶 | atpA、atpB、atpE、atpF*、atpH、atpI | |
细胞色素b/f复合体 | petA、petB*、petD*、petG、petL、petN | |
NADPH脱氢酶 | ndhA*、ndhB*(2)、ndhC、ndhD、ndhE、 ndhF、ndhG、ndhH、ndhI、ndhJ、ndhK | |
细胞色素c | ccsA | |
自身表达相关 self-replication | RNA聚合酶 | rpoA、rpoB、rpoC1*、rpoC2 |
核糖体蛋白 | rpl2*、rpl14、rpl16、rpl20、rpl22、rpl23、rpl32、rpl33、rpl36、 rps2、rps3、rps4、rps7(2)、rps8、rps11、rps12*(2)、rps14、 rps15、rps16*、rps18、rps19 | |
翻译起始因子 | infA | |
RNA相关 RNA-related | 核糖体RNAs | rrn4.5(2)、rrn5(2)、rrn16(2)、rrn23(2) |
转运RNAs | trnA-UGC*(2)、trnC-GCA、trnD-GUC、trnE-UUC、trnF-GAA、 trnfM-CAU、trnG-GCC、trnG-UCC*、trnH-GUG、trnI-CAU、trnI-GAU*(2)、 trnK-UUU*、trnL-CAA、trnL-UAA*、trnL-UAG、trnM-CAU、trnN-GUU(2)、 trnP-UGG、trnQ-UUG、trnR-ACG(2)、trnR-UCU、trnS-CGA、trnS-GCU、 trnS-GGA、trnS-UGA、trnT-GGU、trnT-UGU、trnV-GAC(2)、trnV-UAC*、 trnW-CCA、trnY-GUA | |
ATP依赖型蛋白酶 | clpP** | |
其他 others | 成熟酶 | matK |
乙酰辅酶A羧化酶亚基 | accD | |
外膜蛋白基因 | cemA | |
保守的开放阅读框 | ycf1(2)、ycf2、ycf3**、ycf4 |
[1] | XIA N H, LIU Y H, SOUNDERS R M K. Schisandraceae[C]// WU Z Y, RAVEN P H, HONG D Y. Floral of China. Beijing: Science Press, 2008: 39-47. |
[2] | 林祁, 段林东, 姚炳矾. 南五味子属(五味子科)三种植物之补记[J]. 植物分类学报, 2005, 43(6):567-570. |
LIN Q, DUAN L D, YAO B F. Notes on three species of the genus Kadsura Juss.(Schisandraceae)[J]. Acta Phytotaxon Sin, 2005, 43(6):567-570. | |
[3] | 黄珊珊, 黄晓玲, 宋卉, 等. 中药黑老虎的研究进展[J]. 海峡药学, 2021, 33(11):38-40. |
HUANG S S, HUANG X L, SONG H, et al. Advances in traditional Chinese medicine Kadsura coccinea[J]. Strait Pharm J, 2021, 33(11):38-40.DOI: 10.3969/j.issn.1006-3765.2021.11.012. | |
[4] | 苏维, 王欣悦, 付港, 等. 南五味子属植物的化学成分、药理作用及临床应用研究进展[J]. 中国中药杂志, 2024, 49(1):26-38. |
SU W, WANG X Y, FU G, et al. Research progress on chemical constituents from Kadsura genus and its pharmacological activities and clinical application[J]. China J Chin Mater Med, 2024, 49(1):26-38.DOI: 10.19540/j.cnki.cjcmm.20230718.201. | |
[5] | 杨赛男, 戴斌, 潘清平, 等. 黑老虎植物资源利用研究进展[J]. 湖南生态科学学报, 2022, 9(3):112-120. |
YANG S N, DAI B, PAN Q P, et al. Research progress on the application value and comprehensive utilization of Kadsura coccinea resources[J]. J Hunan Ecol Sci, 2022, 9(3):112-120.DOI: 10.3969/j.issn.2095-7300.2022.03.015. | |
[6] | 杨芝干. 地标奇果:通道“黑老虎”[J]. 生命世界, 2019(9):66-69. |
YANG Z G. Landmark fruit-tongdao “Black Tiger”[J]. Life World, 2019(9):66-69. | |
[7] | 林旭俊, 陆文, 李善志, 等. 药用植物黑老虎的资源调查[J]. 热带林业, 2019, 47(2):34-36. |
LIN X J, LU W, LI S Z, et al. Investigation on the resources of medicinal plant Kadsura coccinea[J]. Trop For, 2019, 47(2):34-36.DOI: 10.3969/j.issn.1672-0938.2019.02.009. | |
[8] | 韦霄, 梁惠凌, 唐辉, 等. 广西南五味子属植物的分布与利用[J]. 广西农业科学, 2006, 37(2):117-119. |
WEI X, LIANG H L, TANG H, et al. Distribution and utilization of Kadsura in Guangxi[J]. Guangxi Agric Sci, 2006, 37(2):117-119.DOI: 10.3969/j.issn.2095-1191.2006.02.006. | |
[9] | 邹建文, 罗先权, 饶红欣, 等. 常绿木质藤本植物黑老虎基因组SSR特征分析及引物开发[J]. 中南林业科技大学学报, 2021, 41(4):130-138. |
ZOU J W, LUO X Q, RAO H X, et al. Characters of genomic SSRs and development of 28 SSR markers for Kadsura coccinea,an evergreen woody vine[J]. J Cent South Univ For Technol, 2021, 41(4):130-138.DOI: 10.14067/j.cnki.1673-923x.2021.04.015. | |
[10] | ZOU J W, HE R H, RAO H X, et al. Genetic diversity and population genetic structure in Kadsura coccinea (Schisandraceae),an evergreen woody vine from Hunan,China[J]. J For Res, 2023, 28(5):364-373.DOI: 10.1080/13416979.2023.2220192. |
[11] | DONG Y Q, WEI X P, QIANG T Y, et al. RAD-Seq and ecological niche reveal genetic diversity,phylogeny,and geographic distribution of Kadsura interior and its closely related species[J]. Front Plant Sci, 2022,13:857016.DOI: 10.3389/fpls.2022.857016. |
[12] | 赵儒楠, 褚晓洁, 刘维, 等. 鹅耳枥属树种叶绿体基因组结构及变异分析[J]. 南京林业大学学报(自然科学版), 2021, 45(2):25-34. |
ZHAO R N, CHU X J, LIU W, et al. Structure and variation analyses of chloroplast genomes in Carpinus[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(2):25-34.DOI: 10.12302/j.issn.1000-2006.202009007. | |
[13] | 袁钰晨, 谢旭强, 徐立清, 等. 不同年龄阶段胡桃楸天然更新幼树的光合生理特性[J]. 森林工程, 2023, 39(4):29-37. |
YUAN Y C, XIE X Q, XU L Q, et al. Photosynthetic physiological characteristics of naturally regenerated Juglans mandshurica saplings at different ages[J]. For Eng, 2023, 39(4):29-37. | |
[14] | WANG J, KAN S L, LIAO X Z, et al. Plant organellar genomes:much done,much more to do[J]. Trends Plant Sci, 2024, 29(7):754-769.DOI: 10.1016/j.tplants.2023.12.014. |
[15] | 邓叶, 李翔, 李平, 等. 黑老虎种质资源与分子生物学研究进展[J]. 湖南生态科学学报, 2024, 11(1):96-104. |
DENG Y, LI X, LI P, et al. Research progress on germplasm resources and molecular biology of Kadsura coccinea[J]. J Hunan Ecol Sci, 2024, 11(1):96-104.DOI: 10.3969/j.issn.2095-7300.2024.01.012. | |
[16] | LIU L Y, FU Y P, LI Y Q, et al. The complete chloroplast genome sequence of Kadsura ananosma[J]. Mitochondrial DNA B Resour, 2020, 5(1):768-769.DOI: 10.1080/23802359.2020.1715866. |
[17] | QIN H Z, DENG L L, SHI Y C. Complete chloroplast genome of Kadsura coccinea (Lem.) A.C.Sm.(Schisandraceae):genome structure and evolution[J]. Mitochondrial DNA B Resour, 2021, 6(3):1222-1223.DOI: 10.1080/23802359.2021.1904798. |
[18] | YANG J, WANG X A, GAO M Y, et al. The complete chloroplast genome of ‘black tiger 2’ (Kadsura coccinea (Lem.) A.C.Smith) in southeast of China and phylogenetic relationships[J]. Mitochondrial DNA B Resour, 2019, 5(1):296-297.DOI: 10.1080/23802359.2019.1698328. |
[19] | DOYLE J J, DOYLE J L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue[J]. Phytochem Bull, 1987, 19:11-15 |
[20] | WANG Q H, WANG H, FU Y P, et al. The complete chloroplast genome sequence of Kadsura heteroclita[J]. Mitochondrial DNA B Resour, 2020, 5(3):2197-2198.DOI: 10.1080/23802359.2020.1768963. |
[21] | FU Y P, LI Y Q, CHEN W, et al. The complete chloroplast genome sequence of Kadsura interior[J]. Mitochondrial DNA B Resour, 2020, 5(1):515-516.DOI: 10.1080/23802359.2019.1710297. |
[22] | JIN L, LIU J J, XIAO T W, et al. Plastome-based phylogeny improves community phylogenetics of subtropical forests in China[J]. Mol Ecol Resour, 2022, 22(1):319-333.DOI: 10.1111/1755-0998.13462. |
[23] | WEI X P, LI H J, CHE P, et al. Comparing chloroplast genomes of traditional Chinese herbs Schisandra sphenanthera and S.chinensis[J]. Chin Herb Med, 2020, 12(3):247-256.DOI: 10.1016/j.chmed.2019.09.009. |
[24] | GUO H J, LIU J S, LUO L, et al. Complete chloroplast genome sequences of Schisandra chinensis:genome structure,comparative analysis,and phylogenetic relationship of basal angiosperms[J]. Sci China Life Sci, 2017, 60(11):1286-1290.DOI: 10.1007/s11427-017-9098-5. |
[25] | JIN J J, YU W B, YANG J B, et al. GetOrganelle:a fast and versatile toolkit for accurate de novo assembly of organelle genomes[J]. Genome Biol, 2020, 21(1):241.DOI: 10.1186/s13059-020-02154-5. |
[26] | TILLICH M, LEHWARK P, PELLIZZER T, et al. GeSeq-versatile and accurate annotation of organelle genomes[J]. Nucleic Acids Res, 2017, 45(W1):W6-W11.DOI: 10.1093/nar/gkx391. |
[27] | KEARSE M, MOIR R, WILSON A, et al. Geneious basic:an integrated and extendable desktop software platform for the organization and analysis of sequence data[J]. Bioinformatics, 2012, 28(12):1647-1649.DOI: 10.1093/bioinformatics/bts199. |
[28] | LOHSE M, DRECHSEL O, BOCK R. OrganellarGenomeDRAW (OGDRAW):a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes[J]. Curr Genet, 2007, 52(5/6):267-274.DOI: 10.1007/s00294-007-0161-y. |
[29] | KATOH K, STANDLEY D M. MAFFT multiple sequence alignment software version 7:improvements in performance and usability[J]. Mol Biol Evol, 2013, 30(4):772-780.DOI: 10.1093/molbev/mst010. |
[30] | ROZAS J, FERRER-MATA A, SÁNCHEZ-DELBARRIO J C, et al. DnaSP 6:DNA sequence polymorphism analysis of large data sets[J]. Mol Biol Evol, 2017, 34(12):3299-3302.DOI: 10.1093/molbev/msx248. |
[31] | BEIER S, THIEL T, MÜNCH T, et al. MISA-web:a web server for microsatellite prediction[J]. Bioinformatics, 2017, 33(16):2583-2585.DOI: 10.1093/bioinformatics/btx198. |
[32] | STAMATAKIS A. RAxML version 8:a tool for phylogenetic analysis and post-analysis of large phylogenies[J]. Bioinformatics, 2014, 30(9):1312-1313.DOI: 10.1093/bioinformatics/btu033. |
[33] | GOULD S B, WALLER R R, MCFADDEN G I. Plastid evolution[J]. Annu Rev Plant Biol, 2008, 59: 491-517. DOI:10.1146/annurev.arplant.59.032607.092915 |
[34] | 杨圆圆, 于世河, 卜鹏图, 等. 不同培育模式下日本落叶松林灌草和土壤养分特征研究[J]. 森林工程, 2023, 39(6):12-25. |
YANG Y Y, YU S H, BU P T, et al. Study on shrub-grass and soil nutrient characteristics of Larix kaempferi forest under different cultivation modes[J]. For Eng, 2023, 39(6):12-25. | |
[35] | JANSEN R K, RUHLMAN T A. Plastid genomes of seed plants[M]//BOCK R, KNOOP V. Advances in Photosynthesis and Respiration. Dordrecht: Springer Netherlands,2012:103-126.DOI: 10.1007/978-94-007-2920-9_5. |
[36] | SAUNDERS R M. Monograph of Kadsura (Schisandraceae)[C]// ANDERSON C. Systematic Botany Monographs. St. Louis: Missouri Botanical Garden Press, 1998. |
[37] | 刘玉壶. 木兰科[C]//中国科学院中国植物志编辑委员会. 中国植物志. 北京: 科学出版社, 1996. |
LIU Y H. Magnoliaceae[C]//The Agenda of the Chinese Academy. Flora Reipublicae Popularis Sinicae. Beijing: Science Press,1996 | |
[38] | SMITH A C. The families Illiciaceae and Schisandraceae[J]. Sargentia, 1947, 7:1-224.DOI: 10.5962/p.265318. |
[39] | 毕海燕, 林祁, 刘长江, 等. 南五味子属(五味子科)的种子形态及其分类学意义[J]. 植物分类学报, 2002, 40(6):501-510. |
BI H Y, LIN Q, LIU C J, et al. Seed morphology of Kadsura Juss.(Schisandraceae) in relation to its taxonomic significance[J]. Acta Phytotaxon Sin, 2002, 40(6):501-510. | |
[40] | LIU Z, HAO G, LUO Y B, et al. Phylogeny and androecial evolution in Schisandraceae,inferred from sequences of nuclear ribosomal DNA ITS and chloroplast DNA trnL-F regions[J]. Int J Plant Sci, 2006, 167(3):539-550.DOI: 10.1086/501476. |
[41] | GUO H J, LI X W, QI Y D, et al. Identification of Dian Ji Xue Teng (Kadsura interior) with DNA barcodes[J]. World J Tradit Chin Med, 2017, 3(1):11-15.DOI: 10.15806/j.issn.2311-8571.2016.0017. |
[42] | HAO G, CHYE M L, SAUNDERS R M K. A phylogenetic analysis of the Schisandraceae based on morphology and nuclear ribosomal ITS sequences[J]. Bot J Linn Soc, 2001, 135(4):401-411.DOI: 10.1006/bojl.2000.0420. |
[43] | CHASE M W, SOLTIS D E, OLMSTEAD R G, et al. Phylogenetics of seed plants:an analysis of nucleotide sequences from the plastid gene rbcL[J]. Ann Mo Bot Gard, 1993, 80(3):528-580.DOI: 10.2307/2399846. |
[44] | QIU Y L, LEE J, BERNASCONI-QUADRONI F, et al. The earliest angiosperms:evidence from mitochondrial,plastid and nuclear genomes[J]. Nature, 1999, 402(6760):404-407.DOI: 10.1038/46536. |
[45] | SOLTIS D E, SOLTIS P S, CHASE M W, et al. Angiosperm phylogeny inferred from 18S rDNA,rbcL,and atpB sequences[J]. Bot J Linn Soc, 2000, 133(4):381-461.DOI: 10.1111/j.1095-8339.2000.tb01588.x. |
[46] | SHAW J, LICKEY E B, BECK J T, et al. The tortoise and the hare Ⅱ:relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis[J]. Am J Bot, 2005, 92(1):142-166.DOI: 10.3732/ajb.92.1.142. |
[47] | SHAW J, LICKEY E B, SCHILLING E E, et al. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms:the tortoise and the hare Ⅲ[J]. Am J Bot, 2007, 94(3):275-288.DOI: 10.3732/ajb.94.3.275. |
[48] | SHAW J, SHAFER H L, LEONARD O R, et al. Chloroplast DNA sequence utility for the lowest phylogenetic and phylogeographic inferences in angiosperms:the tortoise and the hare Ⅳ[J]. Am J Bot, 2014, 101(11):1987-2004.DOI: 10.3732/ajb.1400398. |
[49] | WEISING K. DNA fingerprinting in plants:principles,methods,and applications[M].2nd ed.Boca Raton, FL: Taylor & Francis Group, 2005. |
[50] | YAN H F. Phylogeographic structure of Primula obconica (Primulaceae) inferred from chloroplast microsatellites (cpSSRs) markers[J]. Acta Phytotaxon Sin, 2007, 45(4):488-496.DOI: 10.1360/aps06214. |
[1] | 毛立彦, 李慧敏, 龙凌云, 黄秋伟, 唐毓玮, 於艳萍, 黄歆怡, 檀小辉, 农晓慧, 朱天龙, 陆祖双. 基于SSR分子标记的睡莲遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2024, 48(5): 57-68. |
[2] | 闫平玉, 张磊, 王佳兴, 冯可乐, 王浩浩, 张含国. 红松天然种群遗传多样性分析及核心种质构建[J]. 南京林业大学学报(自然科学版), 2024, 48(5): 69-80. |
[3] | 马建慧, 陈昕, 耿礼阳, 汤晨茜, 魏雪妍. 蔷薇科花楸属白毛系的系统发生分析[J]. 南京林业大学学报(自然科学版), 2024, 48(4): 25-36. |
[4] | 伊贤贵, 李蒙, 王贤荣. 樱亚属分类学研究进展[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 46-57. |
[5] | 李涌福, 杨庆华, 陈林, 张敏, 向其柏, 王贤荣, 段一凡. 木犀属内分组关系的分类修订[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 58-62. |
[6] | 邢冰冰, 李垚, 毛岭峰. 植物功能性状系统发育保守性的类群和地理分异研究——以中国被子植物最大株高为例[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 59-66. |
[7] | 鲁旭东, 董禹然, 李垚, 毛岭峰. 中国亚热带杉木人工林不同林分发育阶段的群落构建机制[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 67-73. |
[8] | 王芝懿, 李振芳, 彭婵, 陈英, 张新叶. 基于荧光SSR标记的紫薇遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 61-69. |
[9] | 王欢利, 严灵君, 黄犀, 王仲伟, 汤诗杰. 南京椴群体遗传多样性和遗传结构分析[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 145-153. |
[10] | 冯一宁, 李因刚, 祁铭, 周鹏燕, 周琦, 董乐, 徐立安. 基于SSR标记的福建省闽楠代表性群体遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 102-108. |
[11] | 吕锋, 解孝满, 韩彪, 鲁仪增, 王磊, 董昕, 王艳, 陆璐, 刘莉, 宗绍宁, 李文清. 基于SSR标记的麻栎天然群体遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 109-116. |
[12] | 葛大朋, 任媛, 赵俊, 王玉婷, 刘学庆, 苑兆和. 西藏石榴野生群体的SSR遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 127-133. |
[13] | 何旭东, 郑纪伟, 教忠意, 窦全琴, 黄利斌. 基于SLAF-seq技术的舒玛栎群体遗传多样性与遗传结构分析[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 81-87. |
[14] | 高景斌, 徐六一, 叶建仁. 马尾松松材线虫病抗性无性系的筛选和遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 109-118. |
[15] | 陈兴彬, 徐海宁, 肖复明, 孙世武, 娄永峰, 邹元熹, 徐小强. 陈山红心杉1.5代种子园遗传多样性和子代父本分析[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 87-92. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||