火棘与紫穗槐根表皮特征对根系拉拔摩擦力的影响

王子杰, 郭欢, 唐丽霞, 吴文丽, 廖拉拉

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (3) : 181-189.

PDF(3508 KB)
PDF(3508 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (3) : 181-189. DOI: 10.12302/j.issn.1000-2006.202404028
研究论文

火棘与紫穗槐根表皮特征对根系拉拔摩擦力的影响

作者信息 +

Effect of Pyracantha fortuneana and Amorpha fruticosa root epidermis on root pulling friction

Author information +
文章历史 +

摘要

【目的】根系表皮的形态特征直接影响根系的抗拉拔特性,决定着根土界面摩擦力的大小,明确根皮形态对拉拔摩擦力的影响,有助于深入理解根系固土机制。【方法】以常见护坡灌木火棘(Pyracantha fortuneana)与紫穗槐(Amorpha fruticosa)为研究对象,用单根拉拔试验测定根土界面的摩擦力;采用分形维数(D)及轮廓算术平均偏差(Ra)刻画根系表皮特征,分析根系表皮特征对拉拔摩擦力的影响。【结果】火棘根系的拉拔摩擦力显著大于紫穗槐,火棘拉拔摩擦力增幅随径级增加而增大,而紫穗槐根系拉拔摩擦力增幅与径级无显著相关性,当径级为(3,4] mm时,拉拔摩擦力增幅最高。微观形态观察可知:火棘根皮轮廓起伏较大,紫穗槐根皮较为平整;形态参数Ra与D能很好地刻画植株的表皮特征,火棘根皮形态为裂隙形,以Ra表征效果最佳,其中Ra与拉拔摩擦力呈极强正相关,Ra越大,拉拔摩擦力越大。紫穗槐根皮为锯齿形,以D表征效果最佳,其中拉拔摩擦力增量与D呈极强正相关,D越大,拉拔摩擦力增量也越大。两植株拉拔过程存在区别,火棘为颗粒嵌入式摩擦,紫穗槐为根土界面接触摩擦,根皮内嵌入的土壤颗粒能在摩擦过程提供更大的摩擦阻力。【结论】本研究揭示了两种植物根表皮特征对根系拉拔摩擦的影响,为进一步了解根系微观特征对固土和摩擦机理作用提供依据。

Abstract

【Objective】The epidermal morphology of plant roots critically determines their anti-pullout performance through root-soil interface friction modulation. Elucidating how root bark topography influences pullout resistance is fundamental for understanding vegetation-mediated slope stabilization mechanisms.【Method】Using Pyracantha fortuneana and Amorpha fruticosa as model slope-protection shrubs, we conducted single-root pullout tests to quantify frictional resistance. Fractal dimension (D) and contour arithmetic mean roughness (Ra) parameters were utilized to characterize root epidermis morphology, with subsequent correlation analysis between these descriptors and pulling resistance.【Result】P. fortuneana demonstrated significantly higher pullout resistance than A. fruticosa. The pulling resistance of P. fortuneana increased progressively with root diameter, whereas A. fruticosa exhibited no significant correlation between pulling resistance increment and root diameter, except for the highest resistance increase observed within the (3,4] mm diameter range. Microscopic analysis revealed distinct root bark morphologies: P. fortuneana displayed prominent undulating contours, while A. fruticosa maintained a relatively smooth surface. The morphological parameters Ra and D effectively characterized epidermal features. For P. fortuneana, fissured root bark morphology was optimally quantified by Ra values, which showed a strong positive correlation with pullout resistance—higher Ra values corresponded to greater resistance. In contrast, A. fruticosa’s serrated root bark morphology was best described by D values, with pullout resistance increment demonstrating a strong positive correlation with increasing D. Mechanistic divergence was evident: P. fortuneana generated resistance through a particle-embedded friction mechanism, while A. fruticosa relied on direct root-soil interface contact. The interlocked soil particles within P. fortuneana’s root bark contributed substantially to enhanced frictional resistance during pullout processes.【Conclusion】This study establishes quantitative relationships between root epidermal morphology and pullout resistance mechanisms, providing critical insights for optimizing slope-protection species selection based on root-surface architectural features.

关键词

拉拔摩擦力 / 根皮微观特征 / 轮廓算术平均偏差 / 分形维数

Key words

pulling friction / root bark microscopic character / contour arithmetic mean deviation(Ra) / the fractal dimension

引用本文

导出引用
王子杰, 郭欢, 唐丽霞, . 火棘与紫穗槐根表皮特征对根系拉拔摩擦力的影响[J]. 南京林业大学学报(自然科学版). 2025, 49(3): 181-189 https://doi.org/10.12302/j.issn.1000-2006.202404028
WANG Zijie, GUO Huan, TANG Lixia, et al. Effect of Pyracantha fortuneana and Amorpha fruticosa root epidermis on root pulling friction[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(3): 181-189 https://doi.org/10.12302/j.issn.1000-2006.202404028
中图分类号: S718.3   

参考文献

[1]
刘亚斌, 胡夏嵩, 余冬梅, 等. 西宁盆地黄土区草本和灌木组合根系分布特征及其增强土体抗剪强度效应[J]. 工程地质学报, 2020, 28(3):471-481.
LIU Y B, HU X S, YU D M, et al. Distribution characteristics of combined herb and shrub roots in loess area of Xining basin and their effect on enhancing soil shear strength[J]. Journal of Engineering Geology, 2020, 28(3):471-481.DOI: 10.13544/j.cnki.jeg.2019-114.
[2]
余冬梅, 祁兆鑫, 刘亚斌, 等. 青海柴达木盆地盐湖区5种盐生植物根-土复合体抗剪强度影响因素及评价[J]. 水土保持研究, 2019, 26(4):157-165.
YU D M, QI Z X, LIU Y B, et al. Factors affecting shear strength and contribution evaluation of root-soil composite systems of five halophytes in the salt lake region of northwest Qaidam basin,Qinghai Province[J]. Research of Soil and Water Conservation, 2019, 26(4):157-165.DOI: 10.13869/j.cnki.rswc.2019.04.024.
[3]
刘亚斌, 梁燊, 石川, 等. 青藏高原东北部黄土区柠条锦鸡儿根系的锚固效应[J]. 中国地质灾害与防治学报, 2023, 34(5):107-116.
LIU Y B, LIANG S, SHI C, et al. The root anchorage effect of shrub species Caragana Korshinskii Kom.in the loess area of northeastern Qinghai-Tibet Plateau[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(5):107-116.DOI: 10.16031/j.cnki.issn.1003-8035.202208024.
[4]
WU T H, MCKINNELL W P, SWANSTON D N. Strength of tree roots and landslides on Prince of Wales Island,Alaska[J]. Canadian Geotechnical Journal, 1979, 16(1):19-33.DOI: 10.1139/t79-003.
[5]
GHESTEM M, VEYLON G, BERNARD A, et al. Influence of plant root system morphology and architectural traits on soil shear resis-tance[J]. Plant and Soil, 2014, 377(1):43-61.DOI: 10.1007/s11104-012-1572-1.
[6]
陆桂红, 杨顺, 王钧, 等. 植物根系固土力学机理的研究进展[J]. 南京林业大学学报(自然科学版), 2014, 38(2):151-156.
LU G H, YANG S, WANG J, et al. The mechanism of plant roots reinforcement on soil[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2014, 38(2):151-156.DOI: 10.3969/j.issn.1000-2006.2014.02.029.
[7]
周云艳, 陈建平, 王晓梅. 植物根系固土护坡机理的研究进展及展望[J]. 生态环境学报, 2012, 21(6):1171-1177.
ZHOU Y Y, CHEN J P, WANG X M. Progress of study on soil reinforcement mechanisms by root and its expectation[J]. Ecology and Environmental Sciences, 2012, 21(6):1171-1177.DOI: 10.16258/j.cnki.1674-5906.2012.06.017.
[8]
张兴玲, 胡夏嵩, 毛小青, 等. 青藏高原东北部黄土区护坡灌木柠条锦鸡儿根系拉拔摩擦试验研究[J]. 岩石力学与工程学报, 2011, 30(S2):3739-3745.
ZHANG X L, HU X S, MAO X Q, et al. Research on pull-out friction test of shrub Caragana korshinskii roots for slope protection in loess area of northeast Qinghai-Tibetan plateau[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S2):3739-3745.
[9]
刘小光. 林木根系与土壤摩擦锚固性能研究[D]. 北京: 北京林业大学, 2013.
LIU X G. Study on friction and anchorage characteristics between root system and soil[D]. Beijing: Beijing Forestry University, 2013.
[10]
DING H, ZHANG H, LIU B, et al. study on mechanical properties of soil stabilization by different vegetation roots on high steep slope[J]. Sustainability, 2023, 15(14):11472.DOI: 10.3390/su15032569.
[11]
HUANG Y, DING J W, SUN W C, et al. Evaluating the shear behavior of rooted soil by discrete element method simulations in two dimensions[J]. Plant and Soil, 2023, 493(1):355-373.DOI: 10.1007/s11104-023-06234-w.
[12]
BENGOUGH A G, CROSER C, PRITCHARD J. A biophysical analysis of root growth under mechanical stress[C]//Plant Roots-From Cells to Systems:proceedings of the 14th Long Ashton International Symposium Plant Roots—From Cells to Systems, held in Bristol, UK, 13-15 September 1995. Netherlands:Springer, 1997: 107-116.
[13]
ZHOU Y, WATTS D, CHENG X P, et al. The traction effect of lateral roots of Pinus yunnanensis on soil reinforcement:a direct in situ test[J]. Plant and Soil, 1997, 190(1):77-86.DOI: 10.1023/A:1004263205165.
[14]
张乔艳, 唐丽霞, 冉洁, 等. 多花木蓝和双荚决明根-土界面摩擦特性[J]. 长江科学院院报, 2023, 40(1):161-164,175.
ZHANG Q Y, TANG L X, RAN J, et al. Frictional characteristics of root-soil interface of Indigofera amblyantha and Cassia bicapsularis[J]. Journal of Yangtze River Scientific Research Institute, 2023, 40(1):161-164,175.DOI: 10.11988/ckyyb.20210822.
[15]
刘亚斌, 胡夏嵩, 余冬梅, 等. 西宁盆地黄土区2种灌木植物根-土界面微观结构特征及摩擦特性试验[J]. 岩石力学与工程学报, 2018, 37(5):1270-1280.
LIU Y B, HU X S, YU D M, et al. Microstructural features and friction characteristics of the interface of shrub roots and soil in loess area of Xining basin[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(5):1270-1280.DOI: 10.13722/j.cnki.jrme.2017.1314.
[16]
邢会文. 4种植物根-土界面摩阻特性研究[D]. 呼和浩特: 内蒙古农业大学, 2009.
XING H W. Test studies on the surface friction characteristics of 4 kinds of plant roots-soil[D]. Hohhot: Inner Mongolia Agricultural University, 2009.
[17]
夏振尧, 刘琦, 许文年, 等. 多花木蓝根系与土体界面摩阻特征[J]. 水土保持学报, 2018, 32(1):128-134.
XIA Z Y, LIU Q, XU W N, et al. Characteristics of interface friction between Indigofera amblyantha root system and soil[J]. Journal of Soil and Water Conservation, 2018, 32(1):128-134.DOI: 10.13870/j.cnki.stbcxb.2018.01.021.
[18]
袁长良. 表面粗糙度及其测量[M]. 北京: 机械工业出版社,1989.
[19]
尤力, 宋西平. 6种弓丝的摩擦力与其表面粗糙度、弹性模量及硬度的关系[J]. 稀有金属材料与工程, 2012, 41(2):294-297.
YOU L, SONG X P. Quantitative relationships between surface roughness,hardness,elastic modulus and friction properties of titanium alloys[J]. Rare Metal Materials and Engineering, 2012, 41(2):294-297.DOI: 10.3969/j.issn.1002-185X.2012.02.023.
[20]
WANG Y Z, YIN Z W, LI H L, et al. Tribological behaviors of UHMWPE composites with different counter surface morphologies[J]. IOP Conference Series:Materials Science and Engineering, 2017,272:012022.DOI: 10.1088/1757-899x/272/1/012022.
[21]
葛世荣. 粗糙表面的分形特征与分形表达研究[J]. 摩擦学学报, 1997, 17(1):74-81.
GE S R. The fractal characterization and fractal representation of rough surfaces[J]. Tribology, 1997, 17(1):74-81.
[22]
阮晓光, 麻诗韵, 李玲, 等. 微动接触中分形粗糙表面的接触应力研究[J]. 机械设计与制造, 2021(5):139-143,148.
RUAN X G, MA S Y, LI L, et al. Study on contact stress of fractal rough surface in fretting contact[J]. Machinery Design & Manufacture, 2021(5):139-143,148.DOI: 10.19356/j.cnki.1001-3997.2021.05.033.
[23]
GUAN Z Z, YE M H, YIN X C, et al. Recognition of surface roughness based on fractal theory and the microscopic images[J]. Applied Mechanics and Materials, 2012, 241/242/243/244:3030-3033.DOI: 10.4028/www.scientific.net/amm.241-244.3030.
[24]
李超, 张静, 焦瑜, 等. PEEK不同表面粗糙度与分形维数关系研究[J]. 润滑与密封, 2011, 36(2):17-21.
LI C, ZHANG J, JIAO Y, et al. Research on the relationship of different surfaces roughness and fractal dimensions of PEEK[J]. Lubrication Engineering, 2011, 36(2):17-21.DOI: 10.3969/j.issn.0254-0150.2011.02.005.
[25]
PAN W J, LI X P, WANG L L, et al. A loading fractal prediction model developed for dry-friction rough joint surfaces considering elastic-plastic contact[J]. Acta Mechanica, 2018, 229(5):2149-2162.DOI: 10.1007/s00707-017-2100-4.
[26]
马永明, 郭聚坤, 王瑞, 等. 砂-结构界面剪切机理及细观行为演化研究[J]. 水利水电技术(中英文), 2024, 55(7): 186-196.
MA Y M, GUO J K, WANG R, et al. Study on shear me-chanism and mesoscopic behavior evolution of sand-structure interface[J]. Water Conservancy and Hydropower Technology, 2024, 55(7): 186-196.DOI:10.13928/j.cnki.wrahe.2024.07.016.
[27]
苑伟娜, 范文, 邓龙胜, 等. 黄土颗粒结构特征及其对剪切行为的影响[J]. 工程地质学报, 2021, 29(3):871-878.
YUAN W N, FAN W, DENG L S, et al. Particle structure characteristics of loess and their effects on shear behavior[J]. Journal of Engineering Geology, 2021, 29(3):871-878.DOI: 10.13544/j.cnki.jeg.2021-0255.
[28]
朱华, 姬翠翠. 分形理论及其应用[M]. 北京: 科学出版社, 2011.
ZHU H, JI C C. Fractal theory and its applications[M]. Beijing: Science Press, 2011.
[29]
邓可月, 刘政, 邓居军, 等. W-M函数模型下表面轮廓形貌的变化规律[J]. 机械设计与制造, 2017(1):47-50.
DENG K Y, LIU Z, DENG J J, et al. Variation of surface profile topography based on W-M function model[J]. Machinery Design & Manufacture, 2017(1):47-50.DOI: 10.19356/j.cnki.1001-3997.2017.01.012.

基金

国家自然科学基金项目(31960332)

编辑: 孟苗婧
PDF(3508 KB)

Accesses

Citation

Detail

段落导航
相关文章

/