基于价格、偏好与灾害不确定性的森林最优轮伐期方法学演进

王晓雯, 耿爱欣, 余智涵, 杨红强

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (5) : 267-278.

PDF(1527 KB)
PDF(1527 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (5) : 267-278. DOI: 10.12302/j.issn.1000-2006.202405013
综合述评

基于价格、偏好与灾害不确定性的森林最优轮伐期方法学演进

作者信息 +

Evolution of optimal forest rotation period methodology considering the uncertainties of price, preference, and catastrophic events

Author information +
文章历史 +

摘要

【目的】当前,市场价格、决策者偏好和自然灾害是影响森林可持续经营的三大不确定性因素,追踪并拓展基于价格、偏好和灾害不确定性的森林最优轮伐期方法学是需着力解决的重要科学问题,可为森林可持续经营并应对气候变化中基于自然的解决方案提供重要途径。【方法】本研究回顾了经典Faustmann模型及其演变,分析了其在森林可持续经营应用中的局限性,并梳理了相应的最优轮伐期方法学演进。【结果】①实物期权分析可以提升林地价值评估的灵活性,而动态规划法则是该情形下最优轮伐期决策的主要解析工具。在解析过程中,需结合市场特性及历史数据合理选择价格模型,以提高最优轮伐期决策的准确性。②政策制定者偏好和森林经营者个人风险偏好都会对确定最优轮伐期产生影响。政策不确定性使得森林经营者倾向于提前采伐,而经营者的风险偏好则影响其面对价格波动的策略。对于经营者偏好,Pressler指示率提供了结合风险预期进行事前决策的有效方法。③自然灾害的发生阻断木材材积生长并提前释放了森林碳汇量,森林经营者通过缩短轮伐期来避免损失。当尝试对灾害造成的碳排放进行惩罚时,可以激励森林经营者采取措施内化灾害不确定性,降低灾害来临频率和损害程度。【结论】基于应对多重不确定性的森林轮伐期方法学框架,整合实物期权、动态规划与风险偏好量化工具,突破传统模型的静态局限。未来应构建价格-政策-灾害的动态耦合模型,开发基于人工智能的多目标优化系统,并通过碳惩罚机制设计实现生态经济目标协同,为气候智慧型森林经营提供决策支持。

Abstract

【Objective】Market price, decision-maker preferences, and natural disasters constitute three major uncertainties affecting sustainable forest management. Advancing methodologies for determining optimal forest rotation periods under these uncertainties is a critical scientific issue that needs to be addressed. Resolving this can provide nature-based solutions in sustainable forestry mauagement and addressing climate change. 【Method】This study revisits the classical Faustmann model and its evolution, exposes its limitations in the applications of sustainable forest management and synthesizes methodological advancements in optimal rotation period determination. 【Result】(1) Real options analysis enhances flexibility in forest land valuation, while dynamic programming serves as the primary analytical tool for optimal rotation decisions under uncertainty. Selecting appropriate price models based on market characteristics and historical data improves decision accuracy.(2) Preferences of both policymakers and forest managers significantly influence optimal rotation periods. Policy uncertainty leads forest managers to tend toward earlier harvesting, while the individual risk preferences shape strategies against price fluctuations. The Pressler indicator offers an effective ex-ante decision-making approach incorporating risk expectations.(3) Natural disasters disrupt timber volume growth and accelerate carbon release from the carbon sequestration capacity of forests. Managers shorten rotations to minimize losses. Penalizing disaster-induced carbon emissions can incentivize managers to internalize disaster risks, reducing both frequency and severity of impacts. 【Conclusion】This study establishes a methodological framework addressing multidimensional uncertainties through integrated real options, dynamic programming, and risk preference quantification tools, overcoming static limitations of traditional models. Future research should: develop dynamic price-policy-disaster coupling model; create AI-based multi-objective optimization systems; and design carbon penalty mechanisms to align the aligmment of ecological-economic goals decision support for climate-smart forest management.

关键词

最优轮伐期 / Faustmann模型 / 市场价格 / 决策者偏好 / 自然灾害 / 森林可持续经营

Key words

optimal rotation period / Faustmann model / market price / decision-maker preference / natural catastrophic events / sustainable forest management

引用本文

导出引用
王晓雯, 耿爱欣, 余智涵, . 基于价格、偏好与灾害不确定性的森林最优轮伐期方法学演进[J]. 南京林业大学学报(自然科学版). 2025, 49(5): 267-278 https://doi.org/10.12302/j.issn.1000-2006.202405013
WANG Xiaowen, GENG Aixin, YU Zhihan, et al. Evolution of optimal forest rotation period methodology considering the uncertainties of price, preference, and catastrophic events[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(5): 267-278 https://doi.org/10.12302/j.issn.1000-2006.202405013
中图分类号: S7-9   

参考文献

[1]
储安婷, 宁卓, 杨红强. 林业碳汇对人工林最优轮伐期的影响——以杉木和落叶松为例[J]. 南京林业大学学报(自然科学版), 2023, 47(03):225-233.
CHU A T, NING Z, YANG H Q. Effects of forest carbon sequestration on optimal rotation of plantations:a case study of Chinese fir and larch[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2023, 47(3):225-233.DOI: 10.12302/j.issn.1000-2006.202107035.
[2]
DONG L B, BETTINGER P, LIU Z G. Periodic harvests,rather than passive conservation,increase the carbon balance of boreal forests much more in northeast China[J]. Forest Ecology and Management, 2023, 530:120777.DOI: 10.1016/j.foreco.2023.120777.
[3]
NORDHAUS W D. To slow or not to slow:the economics of the greenhouse effect[J]. The Economic Journal, 1991, 101(407):920-937.DOI: 10.2307/2233864.
[4]
穆亚丽, 郭建龙, 杨红强. 基于双重关联市场的林业CCER相关研究进展及问题[J]. 资源开发与市场, 2024, 40(4):503-510.
MU Y L, GUO J L, YANG H Q. Research progress and questions of forestry CCER in dual-associated markets[J]. Resource Development & Market, 2024, 40(4):503-510.DOI: 10.3969/j.issn.1005-8141.2024.04.003.
[5]
FAUSTMANN M. Calculation of the value which forest land and immature stands possess for forestry[M]// Economics of Forestry.London:Routledge,2018:1-40.DOI: 10.4324/9781315182681-2.
[6]
徐晋涛, 易媛媛. “双碳” 目标与基于自然的解决方案:森林碳汇的潜力和政策需求[J]. 农业经济问题, 2022, 43(9):11-23.
XU J T, YI Y Y. Nature-based solutions in meeting China’s dual-carbon goal:the potential of forest and policy needs[J]. Issues in Agricultural Economy, 2022, 43(9):11-23.DOI: 10.13246/j.cnki.iae.20220913.001.
[7]
刘迎春, 高显连, 付超, 等. 基于森林资源清查数据估算中国森林生物量固碳潜力[J]. 生态学报, 2019, 39(11):4002-4010.
LIU Y C, GAO X L, FU C, et al. Estimation of carbon sequestration potential of forest biomass in China based on National Forest Resources Inventory[J]. Acta Ecologica Sinica, 2019, 39(11):4002-4010.DOI: 10.5846/stxb201805071016.
[8]
张逸如, 刘晓彤, 高文强, 等. 天然林保护工程区近20年森林植被碳储量动态及碳汇(源)特征[J]. 生态学报, 2021, 41(13):5093-5105.
ZHANG Y R, LIU X T, GAO W Q, et al. Dynamic changes of forest vegetation carbon storage and the characteristics of carbon sink (source) in the Natural Forest Protection Project region for the past 20 years[J]. Acta Ecologica Sinica, 2021,41(13):5093-5105. DOI: 10.5846/stxb202101200215.
[9]
许恩银, 王维枫, 聂影, 等. 中国林业碳贡献区域分布及潜力预测[J]. 中国人口·资源与环境, 2020, 30(5):36-45.
XU E Y, WANG W F, NIE Y, et al. Regional distribution and potential forecast of China’s forestry carbon contributions[J]. China Population Resources and Environment, 2020, 30(5):36-45.DOI: 10.12062/cpre.20200105.
[10]
岳庆敏, 何怀江, 张春雨, 等. 阔叶红松林林木与林分生长对采伐干扰的响应[J]. 生态学报, 2024, 44(5):2019-2028.
YUE Q M, HE H J, ZHANG C Y, et al. Responses of tree growth and stand productivity to harvesting disturbance in Korean pine-broad leaved forests[J]. Acta Ecologica Sinica, 2024, 44(5):2019-2028.DOI: 10.20103/j.stxb.202305151018.
[11]
余智涵, 张楠, 杨红强. 基于价格随机Faustmann模型的最优轮伐期决策方法及演进[J]. 中国人口·资源与环境, 2023, 33(10):211-220.
YU Z H, ZHANG N, YANG H Q. Decision-making method and evolution of optimal rotation period based on the Faustmann model with stochastic price[J]. China Population Resources and Environment, 2023, 33(10):211-220.DOI: 10.12062/cpre.20230304.
[12]
柯文岚, 李泽伟, 罗世兴. 福建省林业碳汇项目价值评估及金融产品定价:基于实物期权理论[J]. 中国国土资源经济, 2024, 37(1):48-55.
KE W L, LI Z W, LUO S X. Value assessment and financial product pricing of forestry carbon sink projects in Fujian Province:based on real option theory[J]. Natural Resource Economics of China, 2024, 37(1):48-55.DOI: 10.19676/j.cnki.1672-6995.000949.
[13]
GATTI L V, BASSO L S, MILLER J B, et al. Amazonia as a carbon source linked to deforestation and climate change[J]. Nature, 2021, 595(7867):388-393.DOI: 10.1038/s41586-021-03629-6.
[14]
刘宇, 羊凌玉, 张静, 等. 近20年我国森林碳汇政策演变和评价[J]. 生态学报, 2023, 43(9):3430-3441.
LIU Y, YANG L Y, ZHANG J, et al. Evolution and assessment of forest carbon sink policy over the past 20 years[J]. Acta Ecologica Sinica, 2023, 43(9):3430-3441.DOI: 10.5846/stxb202202110337.
[15]
BULLOCK E L, WOODCOCK C E. Carbon loss and removal due to forest disturbance and regeneration in the Amazon[J]. Science of The Total Environment, 2021, 764:142839.DOI: 10.1016/j.scitotenv.2020.142839.
[16]
CHLADNÁ Z. Determination of optimal rotation period under stochastic wood and carbon prices[J]. Forest Policy and Economics, 2007, 9(8):1031-1045.DOI: 10.1016/j.forpol.2006.09.005.
[17]
van KOOTEN G C, BINKLEY C S, DELCOURT G. Effect of carbon Taxes and subsidies on optimal forest rotation age and supply of carbon services[J]. American Journal of Agricultural Economics, 1995, 77(2):365-374.DOI: 10.2307/1243546.
[18]
ASANTE P, ARMSTRONG G W. Optimal forest harvest age considering carbon sequestration in multiple carbon pools:a comparative statics analysis[J]. Journal of Forest Economics, 2012, 18(2):145-156.DOI: 10.1016/j.jfe.2011.12.002.
[19]
HOLTSMARK B, HOEL M, HOLTSMARK K. Optimal harvest age considering multiple carbon pools: a comment[J]. Journal of Forest Economics, 2013, 19(1):87-95.DOI: 10.1016/j.jfe.2012.09.002.
[20]
杨红强, 余智涵. 全球木质林产品碳科学研究动态及未来的重点问题[J]. 南京林业大学学报(自然科学版), 2021, 45(4):219-228.
YANG H Q, YU Z H. Research trends and future key issues of global harvested wood products carbon science[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(4):219-228.DOI: 10.12302/j.issn.1000-2006.202006029.
[21]
YU Z H, NING Z, CHANG W Y, et al. Optimal harvest decisions for the management of carbon sequestration forests under price uncertainty and risk preferences[J]. Forest Policy and Economics, 2023, 151:102957.DOI: 10.1016/j.forpol.2023.102957.
[22]
GENG A X, YANG H Q, CHEN J X, et al. Review of carbon storage function of harvested wood products and the potential of wood substitution in greenhouse gas mitigation[J]. Forest Policy and Economics, 2017, 85:192-200.DOI: 10.1016/j.forpol.2017.08.007.
[23]
ASANTE P, ARMSTRONG G W, ADAMOWICZ W L. Carbon sequestration and the optimal forest harvest decision:a dynamic programming approach considering biomass and dead organic matter[J]. Journal of Forest Economics, 2011, 17(1):3-17.DOI: 10.1016/j.jfe.2010.07.001.
[24]
余智涵, 宁卓, 杨红强. 随机价格下杉木人工林的碳汇收益及最优轮伐期确定[J]. 自然资源学报, 2022, 37(3):753-768.
YU Z H, NING Z, YANG H Q. Carbon sequestration benefit and optimal rotation period determination of Cunninghamia lanceolata plantation under stochastic price[J]. Journal of Natural Resources, 2022, 37(3):753-768.DOI: 10.31497/zrzyxb.20220313.
[25]
PINGOUD K, WAGNER F. Methane emissions from landfills and carbon dynamics of harvested wood products:the first-order decay revisited[J]. Mitigation and Adaptation Strategies for Global Change, 2006, 11(5):961-978.DOI: 10.1007/s11027-006-9029-6.
[26]
MARLAND E S, STELLAR K, MARLAND G H. A distributed approach to accounting for carbon in wood products[J]. Mitigation and Adaptation Strategies for Global Change, 2010, 15(1):71-91.DOI: 10.1007/s11027-009-9205-6.
[27]
AMACHER G S, OLLIKAINEN M, KOSKELA E. Economics of forest resources[M]. Cambridge: MIT Press, 2009.
[28]
HARTMAN R. The harvesting decision when a standing forest has value[M]// Economics of Forestry.London:Routledge, 2018:295-302. DOI: 10.4324/9781315182681-21.
[29]
张楠, 宁卓, 杨红强. 弗斯曼模型及其广义改进:基于林地期望值评估方法学演进[J]. 林业经济, 2020, 42(10):3-15.
ZHANG N, NING Z, YANG H Q. Faustmann model and its generalization:methodology evolution based on evaluation of forestland expectation value[J]. Forestry Economics, 2020, 42(10):3-15.DOI: 10.13843/j.cnki.lyjj.20201202.002.
[30]
ASSMUTH A, TAHVONEN O. Optimal carbon storage in even-and uneven-aged forestry[J]. Forest Policy and Economics, 2018, 87:93-100.DOI: 10.1016/j.forpol.2017.09.004.
[31]
EKHOLM T. Optimal forest rotation under carbon pricing and forest damage risk[J]. Forest Policy and Economics, 2020, 115:102131.DOI: 10.1016/j.forpol.2020.102131.
[32]
GOUNDREY G K. Forest management and the theory of capital[J]. Canadian Journal of Economics and Political Science, 1960, 26(3):439-451.DOI: 10.2307/138789.
[33]
ALTAMIRANO-FERNÁNDEZ A, ROJAS-PALMA A, ESPINOZA-MEZA S. Optimal management strategies to maximize carbon capture in forest plantations:a case study with Pinus radiata D.Don[J]. Forests, 2023, 14(1):82.DOI: 10.3390/f14010082.
[34]
李林蓓, 李剑泉, 郭慧敏. 中国木材市场时空格局分析[J]. 林业资源管理, 2022(1):78-85.
LI L B, LI J Q, GUO H M. Analysis on spatiotemporal pattern of China’s timber market[J]. Forest Resources Management, 2022(1):78-85.DOI: 10.13466/j.cnki.lyzygl.2022.01.010.
[35]
XU H, YUE C, PIAO S L. Future forestation in China should aim to align the temporal service window of the forest carbon sink with the “Carbon neutrality” strategy[J]. Science China Earth Sciences, 2023, 66(12):2971-2976.DOI: 10.1007/s11430-023-1203-3.
[36]
NEWMAN D H. The optimal forest rotation: a discussion and annotated bibliography[R]. Asheville, North Carolina: U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station, 1988: 48. DOI: 10.2737/SE-GTR-48.
[37]
国家防灾减灾救灾委员会办公室. 应急管理部发布2023年全国自然灾害基本情况[EB/OL].(2024-01-21)[2024-05-10]. https://slcyfh.mem.gov.cn/Item/36030.aspx
Office of the National Disaster Prevention, Reduction and Relief Commission. Ministry of Emergency Management releases statistical report on national natural disasters in 2023[EB/OL].(2024-01-21)[2024-05-10]. https://slcyfh.mem.gov.cn/Item/36030.aspx
[38]
REED W J. The effects of the risk of fire on the optimal rotation of a forest[J]. Journal of Environmental Economics and Management, 1984, 11(2):180-190.DOI: 10.1016/0095-0696(84)90016-0.
[39]
MEI B, CLUTTER M L. Evaluating timberland investment opportunities in the United States:a real options analysis[J]. Forest Science, 2015, 61(2):328-335.DOI: 10.5849/forsci.13-090.
[40]
NORSTRØM C J. A stochastic model for the growth period decision in forestry[J]. The Swedish Journal of Economics, 1975, 77(3):329.DOI: 10.2307/3438965.
[41]
MANLEY B, MACLAREN P. Potential impact of carbon trading on forest management in New Zealand[J]. Forest Policy and Economics, 2012, 24:35-40.DOI: 10.1016/j.forpol.2010.01.001.
[42]
SAUTER P A, MUßHOFF O, MÖHRING B, et al. Faustmann vs.real options theory: an experimental investigation of foresters’ harvesting decisions[J]. Journal of Forest Economics, 2016, 24:1-20.DOI: 10.1016/j.jfe.2016.01.004.
[43]
DIXIT A K, PINDYCK R S. Investment under uncertainty[M]. Princeton, New Jersey: Princeton University Press, 1994.
[44]
REGAN C M, BRYAN B A, CONNOR J D, et al. Real options analysis for land use management:methods,application,and implications for policy[J]. Journal of Environmental Management, 2015, 161:144-152.DOI: 10.1016/j.jenvman.2015.07.004.
[45]
BORISON A. Real options analysis:where are the emperor’s clothes?[J]. Journal of Applied Corporate Finance, 2005, 17(2):17-31. DOI: 10.1111/j.1745-6622.2005.00029.x.
[46]
LEMBERSKY M R, JOHNSON K N. Optimal policies for managed stands:an infinite horizon Markov decision process approach[J]. Forest Science, 1975, 21(2):109-122.DOI: 10.1093/forestscience/21.2.109.
[47]
PETRASEK S, PEREZ-GARCIA J, BARE B B. Valuing forestlands with stochastic timber and carbon prices[J]. Annals of Operations Research, 2015, 232(1):217-234.DOI: 10.1007/s10479-013-1389-1.
[48]
MANLEY B. How does real option value compare with Faustmann value in the context of the New Zealand Emissions Trading Scheme?[J]. Forest Policy and Economics, 2013, 30:14-22.DOI: 10.1016/j.forpol.2013.02.001.
[49]
NING Z, SUN C Y. Carbon sequestration and biofuel production on forestland under three stochastic prices[J]. Forest Policy and Economics, 2019, 109:102018.DOI: 10.1016/j.forpol.2019.102018.
[50]
MANLEY B, NIQUIDET K. What is the relevance of option pricing for forest valuation in New Zealand[J]. Forest Policy and Economics, 2010, 12(4):299-307.DOI: 10.1016/j.forpol.2009.11.002.
[51]
TAHVONEN O, KALLIO M. Optimal harvesting of forest age classes under price uncertainty and risk aversion[J]. Natural Resource Modeling, 2006, 19(4):557-585. DOI: 10.1111/j.1939-7445.2006.tb00194.x.
[52]
CHAUDHARI U K, KANE M B, WETZSTEIN M E. The key literature of,and trends in,forestry investment decisions using real options analysis[J]. International Forestry Review, 2016, 18(2):146-179.DOI: 10.1505/146554816818966291.
[53]
ZHANG D W. Faustmann in an uncertain policy environment[J]. Forest Policy and Economics, 2001, 2(2):203-210.DOI: 10.1016/S1389-9341(01)00052-1.
[54]
孙思宇, 宁卓. 采伐政策风险对人工林最优轮伐期的影响[J]. 林业经济, 2023, 45(3):66-78.
SUN S Y, NING Z. The impact of harvesting policy risk on optimal rotation of plantations[J]. Forestry Economics, 2023, 45(3):66-78.DOI: 10.13843/j.cnki.lyjj.20230515.001.
[55]
王科, 吕晨. 中国碳市场建设成效与展望(2024)[J]. 北京理工大学学报(社会科学版), 2024, 26(2):16-27.
WANG K, LYU C. Achievements and prospect of China’s national carbon market construction(2024)[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2024, 26(2):16-27.DOI: 10.15918/j.jbitss1009-3370.2024.7182.
[56]
汪宗顺, 张海鹏, 岳超, 等. 造林增汇是实现碳中和的成本有效途径吗?:以西北地区为例[J]. 自然资源学报, 2024, 39(3):731-748.
WANG Z S, ZHANG H P, YUE C, et al. Is afforestation for carbon sinks a cost-effective way to achieve carbon neutrality?Take northwest China as an example[J]. Journal of Natural Resources, 2024, 39(3):731-748.DOI: 10.31497/zrzyxb.20240314.
[57]
齐绍洲, 王薇. 欧盟碳排放权交易体系第三阶段改革对碳价格的影响[J]. 环境经济研究, 2020, 5(1):1-20,2.
QI S Z, WANG W. The impact of the phase Ⅲ reform of European union emissions trading system on carbon allowance price[J]. Journal of Environmental Economics, 2020, 5(1):1-20,2.DOI: 10.19511/j.cnki.jee.2020.01.001.
[58]
ZHANG N, NING Z, ZHANG H, et al. Optimal rotation period of Populus plantations considering multiple carbon pools and carbon cap policies in Jiangsu,east China[J]. Forestry, 2023, 96(2):249-263.DOI: 10.1093/forestry/cpac044.
[59]
许骞骞, 曹先磊, 孙婷, 等. 中国森林碳汇潜力与增汇成本评估:基于Meta分析方法[J]. 自然资源学报, 2022, 37(12):3217-3233.
XU Q Q, CAO X L, SUN T, et al. Assessment of forest carbon sequestration potential and the cost of increasing carbon sequestration in China:based on meta-analysis method[J]. Journal of Natural Resources, 2022, 37(12):3217-3233. DOI:10.31497/zrzyxb.20221213.
[60]
DAIGNEAULT A, SIMONS-LEGAARD E, WEISKITTEL A. Tradeoffs and synergies of optimized management for maximizing carbon sequestration across complex landscapes and diverse ecosystem services[J]. Forest Policy and Economics, 2024, 161:103178.DOI: 10.1016/j.forpol.2024.103178.
[61]
ZHANG F, CHANG S J. Measuring the impact of risk preference on land valuation: evidence from forest management[J]. Land Economics, 2018, 94(3): 425-436. DOI: 10.3368/le.94.3.425.
[62]
PRESSLER M R. Aus der Holzzuwachlehre (zweiter Artikel)[J]. Allgemeine Forst-und Jagd-Zeitung, 1860, 36: 173-191.
[63]
CHANG S J, DEEGEN P. Pressler’s indicator rate formula as a guide for forest management[J]. Journal of Forest Economics, 2011, 17(3):258-266.DOI: 10.1016/j.jfe.2011.04.002.
[64]
刘世荣, 王晖, 李海奎, 等. 碳中和目标下中国森林碳储量、碳汇变化预估与潜力提升途径[J]. 林业科学, 2024, 60(4):157-172.
LIU S R, WANG H, LI H K, et al. Projections of China’s forest carbon storage and sequestration and ways of their potential capacity enhancement[J]. Scientia Silvae Sinicae, 2024, 60(4):157-172.DOI: 10.11707/j.1001-7488.LYKX20230206.
[65]
STAINBACK G A, LAVALAPATI J R R A. Modeling catastrophic risk in economic analysis of forest carbon sequestration[J]. Natural Resource Modeling, 2004, 17(3):299-317. DOI: 10.1111/j.1939-7445.2004.tb00138.x.
[66]
WANG X Y, ZHAO C Y, JIA Q Y. Impacts of climate change on forest ecosystems in northeast China[J]. Advances in Climate Change Research, 2013, 4(4):230-241.DOI: 10.3724/SP.J.1248.2013.230.
[67]
NING Z, SUN C Y. Forest management with wildfire risk,prescribed burning and diverse carbon policies[J]. Forest Policy and Economics, 2017, 75:95-102.DOI: 10.1016/j.forpol.2016.10.004.
[68]
REED W J. The decision to conserve or harvest old-growth forest[J]. Ecological Economics, 1993, 8(1):45-69.DOI: 10.1016/0921-8009(93)90030-A.
[69]
CREAMER S F, GENZ A, BLATNER K A. The effect of fire risk on the critical harvesting times for Pacific northwest Douglas-fir when carbon price is stochastic[J]. Agricultural and Resource Economics Review, 2012, 41(3):313-326.DOI: 10.1017/s1068280500001283.

基金

国家社科基金重大项目(23&ZD103)

编辑: 郑琰燚
PDF(1527 KB)

Accesses

Citation

Detail

段落导航
相关文章

/