植物病原真菌聚酮类次级代谢产物研究进展

苏胜荣, 陈凤毛, 李欢, 王立超

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (4) : 285-292.

PDF(2128 KB)
PDF(2128 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (4) : 285-292. DOI: 10.12302/j.issn.1000-2006.202405014
综合述评

植物病原真菌聚酮类次级代谢产物研究进展

作者信息 +

Research progress on the polyketone secondary metabolites from phytopathogenic fungi

Author information +
文章历史 +

摘要

在植物与病原真菌相互作用过程中,病原真菌通过产生次级代谢产物协助其对植物的入侵和致病。由聚酮合酶(polyketide synthase, PKS)参与合成的真菌聚酮类化合物是真菌中最丰富的次级代谢产物,通过合成重要的色素、致病因子和真菌毒素帮助病原真菌逃避和破坏寄主植物的免疫机制,从而成功侵染。笔者综述了真菌Ⅰ型聚酮合酶多功能域重复串联催化的结构特点;独立及偶联其他酶类催化基因簇合成包括真菌毒素、抗生素和色素在内的多种化合物,赋予真菌发育、抗逆和致病等诸多功能;总结了转录因子、表观遗传学修饰和次级代谢通路对聚酮化合物合成的调控方式;着重列举近年来主要植物病原真菌聚酮类产物及其合成基因簇;并对真菌聚酮类次级代谢产物调控网络解析、合成生物学和产物鉴定等研究方向进行展望。通过分析以期为揭示病原真菌致病机制和植物真菌病害的防控提供研究思路和策略。

Abstract

During host-pathogen interaction, pathogenic fungi facilitate host invasion and pathogenesis through the production of secondary metabolites. Fungal polyketides, catalyzed by polyketide synthase (PKS), represent the most abundant class of bioactive metabolites in fungi, they can establish phytopathogenic fungi successful infections, by synthesizing key pigments, virulence factors, and mycotoxins to evade and disrupt host plant immune mechanisms. This review systematically examines the structural characteristics, classification, biological functions, and metabolic regulation of fungal type Ⅰ PKS. Furthermore, we highlight recent advances in characterizing polyketide compounds and their biosynthetic gene clusters in plant-pathogenic fungi. Potential future research directions for fungal polyketides are prospected, with emphasis on their role in fungal pathogenicity. Collectively, this work aims to provide novel insights and methodological frameworks for elucidating pathogenic mechanisms of fungal infections and developing targeted disease control strategies.

关键词

丝状真菌 / 聚酮化合物 / 基因簇 / 致病功能 / 调控机制

Key words

filamentous fungi / polyketide / gene cluster / pathogenic function / regulation mechanism

引用本文

导出引用
苏胜荣, 陈凤毛, 李欢, . 植物病原真菌聚酮类次级代谢产物研究进展[J]. 南京林业大学学报(自然科学版). 2025, 49(4): 285-292 https://doi.org/10.12302/j.issn.1000-2006.202405014
SU Shengrong, CHEN Fengmao, LI Huan, et al. Research progress on the polyketone secondary metabolites from phytopathogenic fungi[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(4): 285-292 https://doi.org/10.12302/j.issn.1000-2006.202405014
中图分类号: S432.1;S763   

参考文献

[1]
BRAKHAGE A A, SCHROECKH V. Fungal secondary metabolites-strategies to activate silent gene clusters[J]. Fungal Genetics Biology, 2011, 48(1):15-22.DOI: 10.1016/j.fgb.2010.04.004.
[2]
YIM G, HUIMI WANG H, DAVIES FRS J. Antibiotics as signalling molecules[J]. Philosophical Transactions B of Royal Society, 2007, 362(1483):1195-1200.DOI: 10.1098/rstb.2007.2044.
[3]
KELLER N P, TURNER G, BENNETT J W. Fungal secondary metabolism: from biochemistry to genomics[J]. Nature Review Microbiology, 2005,3:937-947.DOI: 10.1038/nrmicro1286.
[4]
KLAUS M, ROSSINI E, LINDEN A, et al. Solution structure and conformational flexibility of a polyketide synthase module[J]. Journal of the American Chemical Society, 2021, 1(12):2162-2171.DOI: 10.1021/jacsau.1c00043.
[5]
LABIB M M, AMIN M K, ALZOHAIRY A M, et al. Inhibition analysis of aflatoxin by in silico targeting the thioesterase domain of polyketide synthase enzyme in Aspergillus ssp[J]. Journal of Biomolecular Structure and Dynamics, 2022, 40(10):4328-4340.DOI: 10.1080/07391102.2020.1856186.
[6]
ZHEN X, MAO M J, WANG R Z, et al. Fusapyrone A,a γ-pyrone derived from a desert Fusarium sp[J]. Journal of Asian Natural Products Research, 2021, 23(5):504-511.DOI: 10.1080/10286020.2020.1794857.
[7]
DIETRICH D, VEDERAS J C. Lovastatin,compactin,and related anticholesterolemic agents[M]// Fungal Biology.New York: Springer,2014:263-287.DOI: 10.1007/978-1-4939-1191-2_12.
[8]
BAKER S E, KROKEN S, INDERBITZIN P, et al. Two polyketide synthase-encoding genes are required for biosynthesis of the polyketide virulence factor,T-toxin,by Cochliobolus heterostrophus[J]. Molecular Plant-Microbe Interactions, 2006, 19(2):139-149.DOI: 10.1094/MPMI-19-0139.
[9]
NIEHAUS E M, VON BARGEN K W, ESPINO J J, et al. Characterization of the fusaric acid gene cluster in Fusarium fujikuroi[J]. Applied Microbiology and Biotechnology, 2014, 98(4):1749-1762.DOI: 10.1007/s00253-013-5453-1.
[10]
MALZ S, GRELL M N, THRANE C, et al. Identification of a gene cluster responsible for the biosynthesis of aurofusarin in the Fusarium graminearum species complex[J]. Fungal Genetics and Biology, 2005, 42(5):420-433.DOI: 10.1016/j.fgb.2005.01.010.
[11]
KEATINGE C A T. The structures of type Ⅰ polyketide synthases[J]. Natural Product Reports, 2012, 29(10):1050.DOI: 10.1039/c2np20019h.
[12]
SHIMIZU Y, OGATA H, GOTO S. Type Ⅲ polyketide synthases:functional classification and phylogenomics[J]. Chembiochem, 2017, 18(1):50-65.DOI: 10.1002/cbic.201600522.
[13]
许杨, 魏康霞. 真菌聚酮合酶基因的研究进展[J]. 食品与生物技术学报, 2008, 27(2):1-5.
XU Y, WEI K X. Advance in fungal polyketide synthases gene[J]. Journal of Food Science Biotechnology, 2008, 27(2):1-5.DOI: 10.3321/j.issn:1673-1689.2008.02.001.
[14]
JØRGENSEN S H, FRANDSEN R J N, NIELSEN K F, et al. Fusarium graminearum PKS14 is involved in orsellinic acid and orcinol synthesis[J]. Fungal Genetics Biology, 2014, 70:24-31.DOI: 10.1016/j.fgb.2014.06.008.
[15]
SHI K X, JOVÉ R P, DEPOTTER J R L, et al. In silico prediction and characterisation of secondary metabolite clusters in the plant pathogenic fungus Verticillium dahliae[J]. FEMS Microbiology Letters, 2019, 366(7):fnz081.DOI: 10.1093/femsle/fnz081.
[16]
PALMER J M, KELLER N P. Secondary metabolism in fungi:Does chromosomal location matter?[J]. Current Opinion in Microbiology, 2010, 13(4):431-436.DOI: 10.1016/j.mib.2010.04.008.
[17]
LUO X M, CAO J D, HUANG J K, et al. Genome sequencing and comparative genomics reveal the potential pathogenic mechanism of Cercospora sojina Hara on soybean[J]. DNA Research, 2018, 25(1):25-37.DOI: 10.1093/dnares/dsx035.
[18]
LIU H, WANG H, LIAO X L, et al. Mycoviral gene integration converts a plant pathogenic fungus into a biocontrol agent[J]. Proceedings of the National Academy of Sciences of the USA, 2022, 119(50):e2214096119.DOI: 10.1073/pnas.2214096119.
[19]
朱赫, 纪明山. 具有除草活性植物病原真菌毒素的作用模式[J]. 杂草科学, 2014, 32(4):1-7.
ZHU H, JI M S. Mode of action of mycotoxins from plant pathogenic fungi having herbicidal activity[J]. Weed Science, 2014, 32(4):1-7.DOI: 10.19588/j.issn.1003-935x.2014.04.001.
[20]
陈锡玮, 许蒙, 冯程, 等. 真菌聚酮化合物生物合成研究进展[J]. 生物工程学报, 2018, 34(2):151-164.
CHEN X W, XU M, FENG C, et al. Progress in fungal polyketide biosynthesis[J]. Chinese Journal of Biotechnology, 2018, 34(2):151-164.DOI: 10.13345/j.cjb.170219.
[21]
HATTA R, ITO K, HOSAKI Y, et al. A conditionally dispensable chromosome controls host-specific pathogenicity in the fungal plant pathogen Alternaria alternata[J]. Genetics, 2002, 161(1):59-70.DOI: 10.1093/genetics/161.1.59.
[22]
IZUMI Y, OHTANI K, MIYAMOTO Y, et al. A polyketide synthase gene,ACRTS2 is responsible for biosynthesis of host-selective ACR-toxin in the rough lemon pathotype of Alternaria alternata[J]. Molecular Plant-Microbe Interactions, 2012, 25(11):1419-1429.DOI: 10.1094/MPMI-06-12-0155-R.
[23]
王洪秀, 张倩, 王玲杰, 等. 链格孢菌毒素合成相关基因研究进展[J]. 中国生物工程杂志, 2015, 35(11):92-98.
WANG H X, ZHANG Q, WANG L J, et al. Advances in genetic research related to the synthesis of Alternaria alternata toxins[J]. China Biotechnology, 2015, 35(11):92-98.DOI: 10.13523/j.cb.20151113.
[24]
刘思远, 申东晨, 刘峥, 等. 不同水曲柳褐斑病病级叶片的微生物多样性[J]. 森林工程, 2024, 40 (1): 1-8.
LIU S Y, SHEN D C, LIU Z, et al. Microbial diversity in leaves of different Fraxinus mandshurica brown spot disease stages[J]. Forest Engineering, 2024, 40(1):1-8. DOI:10.3969/j.issn.1006-8023.2024.01.001
[25]
AKAGI Y, AKAMATSU H, OTANI H, et al. Horizontal chromosome transfer,a mechanism for the evolution and differentiation of a plant-pathogenic fungus[J]. Eukaryotic Cell, 2009, 8(11):1732-1738.DOI: 10.1128/EC.00135-09.
[26]
ZHANG D D, WANG J, WANG D, et al. Population genomics demystifies the defoliation phenotype in the plant pathogen Verticillium dahliae[J]. New Phytologist, 2019, 222(2):1012-1029.DOI: 10.1111/nph.15672.
[27]
GAFFOOR I, TRAIL F. Characterization of two polyketide synthase genes involved in Zearalenone biosynthesis in Gibberella zeae[J]. Applied and Environmental Microbiology, 2006, 72(3):1793-1799.DOI: 10.1128/AEM.72.3.1793-1799.2006.
[28]
赵彦婷. 拟南芥和番茄对神经鞘脂类似类真菌毒素的抗性机理研究[D]. 杭州: 浙江大学, 2014.
ZHAO Y T. Study on the resistance mechanism of Arabidopsis thaliana and tomato to sphingolipid-like mycotoxins[D]. Hangzhou: Zhejiang University, 2014.
[29]
曹志艳, 杨胜勇, 董金皋. 植物病原真菌黑色素与致病性关系的研究进展[J]. 微生物学通报, 2006, 33(1):154-158.
CAO Z Y, YANG S Y, DONG J G. A review on relations between pathogenicity and melanin of plant fungi[J]. Microbiology China, 2006, 33(1):154-158.DOI: 10.13344/j.microbiol.china.2006.01.033.
[30]
SCHUMACHER J. DHN melanin biosynthesis in the plant pathogenic fungus Botrytis cinerea is based on two developmentally regulated key enzyme (PKS)-encoding genes[J]. Molecular Microbiology, 2016, 99(4):729-748.DOI: 10.1111/mmi.13262.
[31]
STAPPERS M H T, CLARK A E, AIMANIANDA V, et al. Recognition of DHN-melanin by a C-type lectin receptor is required for immunity to Aspergillus[J]. Nature, 2018, 555(7696):382-386.DOI: 10.1038/nature25974.
[32]
XIONG D G, WANG Y L, TIAN L Y, et al. MADS-box transcription factor VdMcm1 regulates conidiation,microsclerotia formation,pathogenicity,and secondary metabolism of Verticillium dahliae[J]. Front in Microbiology, 2016,7:1192.DOI: 10.3389/fmicb.2016.01192.
[33]
KUBO Y, FUJIHARA N, HARATA K, et al. Colletotrichum orbiculare FAM1 encodes a novel woronin body-associated Pex22 peroxin required for appressoriu-mediated plant infection[J]. mBio, 2015, 6(5):e01305-15.DOI: 10.1128/mBio.01305-15.
[34]
YUN C S, MOTOYAMA T, OSADA H. Biosynthesis of the mycotoxin tenuazonic acid by a fungal NRPS-PKS hybrid enzyme[J]. Nature Communications, 2015,6:8758.DOI: 10.1038/ncomms9758.
[35]
MOTOYAMA T, NOGAWA T, SHIMIZU T, et al. Fungal NRPS-PKS hybrid enzymes biosynthesize new γ-lactam compounds,taslactams A-D,analogous to actinomycete proteasome inhibitors[J]. ACS Chemical Biology, 2023, 18(2):396-403.DOI: 10.1021/acschembio.2c00830.
[36]
LIN C, FENG X L, LIU Y, et al. Bioinformatic analysis of secondary metabolite biosynthetic potential in pathogenic Fusarium[J]. Journal of Fungi, 2023, 9(8):850.DOI: 10.3390/jof9080850.
[37]
VILLANI A, PROCTOR R H, KIM H S, et al. Variation in secondary metabolite production potential in the Fusarium incarnatum-equiseti species complex revealed by comparative analysis of 13 genomes[J]. BMC Genomics, 2019, 20(1):314.DOI: 10.1186/s12864-019-5567-7.
[38]
ATANASOFF K A K, SEIDL B, STEINERT K, et al. Biosynthesis of the isocoumarin derivatives fusamarins is mediated by the PKS8 gene cluster in Fusarium[J]. ChembioChem, 2023, 24(6):e202200342.DOI: 10.1002/cbic.202200342.
[39]
ATANASOFF K A K, LÜNNE F, KALININA S, et al. Biosynthesis of fusapyrone depends on the H3K9 methyltransferase,FmKmt1,in Fusarium mangiferae[J]. Frontiers in Fungal Biology, 2021,2:671796.DOI: 10.3389/ffunb.2021.671796.
[40]
RODRÍGUEZ T M F, GUTIÉRREZ R, CORRALES A R, et al. Expression of bik cluster and production of bikaverin by Fusarium oxysporum f.sp.lycopersici grown using two alternate nitrogen sources[J]. International Microbiology, 2022, 25(1):153-164.DOI: 10.1007/s10123-021-00206-9.
[41]
LI H, WEI H C, HU J Y, et al. Genomics-driven discovery of phytotoxic cytochalasans involved in the virulence of the wheat pathogen Parastagonospora nodorum[J]. ACS Chemical Biology, 2020, 15(1):226-233.DOI: 10.1021/acschembio.9b00791.
[42]
STEINERT K, ATANASOFF K A K, MESSNER E, et al. Tools to make Stachybotrys chartarum genetically amendable:key to unlocking cryptic biosynthetic gene clusters[J]. Fungal Genetics Biology, 2024,172:103892.DOI: 10.1016/j.fgb.2024.103892.
[43]
CONG J, XIAO K Q, JIAO W L, et al. The coupling between cell wall integrity mediated by MAPK kinases and SsFkh1 is involved in Sclerotia formation and pathogenicity of Sclerotinia sclerotiorum[J]. Frontiers in Microbiology, 2022,13:816091.DOI: 10.3389/fmicb.2022.816091.
[44]
WANG Y L, HU X P, FANG Y L, et al. Transcription factor VdCmr1 is required for pigment production,protection from UV irradiation,and regulates expression of melanin biosynthetic genes in Verticillium dahliae[J]. Microbiology (Reading), 2018, 164(4):685-696.DOI: 10.1099/mic.0.000633.
[45]
LI H, WANG D, ZHANG D D, et al. A polyketide synthase from Verticillium dahliae modulates melanin biosynthesis and hyphal growth to promote virulence[J]. BMC Biology, 2022, 20(1):125.DOI: 10.1186/s12915-022-01330-2.
[46]
YU F Y, CHIU C M, LEE Y Z, et al. Polyketide synthase gene expression in relation to chloromonilicin and melanin production in Monilinia fructicola[J]. Phytopathology, 2020, 110(8):1465-1475.DOI: 10.1094/PHYTO-02-20-0059-R.
[47]
PORQUIER A, MORAGA J, MORGANT G, et al. Botcinic acid biosynthesis in Botrytis cinerea relies on a subtelomeric gene cluster surrounded by relics of transposons and is regulated by the Zn2Cys6 transcription factor BcBoa13[J]. Current Genetics, 2019, 65(4):965-980.DOI: 10.1007/s00294-019-00952-4.
[48]
MALMIERCA M G, IZQUIERDO B I, MCCORMICK S P, et al. Botrydial and botcinins produced by Botrytis cinerea regulate the expression of Trichoderma arundinaceum genes involved in trichothecene biosynthesis[J]. Molecular Plant Pathology, 2016, 17(7):1017-1031.DOI: 10.1111/mpp.12343.
[49]
LUO Y P, ZHENG C J, CHEN G Y, et al. Three new polyketides from a mangrove-derived fungus Colletotrichum gloeosporioides[J]. Journal of Antibiotics, 2019, 72(7):513-517.DOI: 10.1038/s41429-019-0178-8.
[50]
LANUBILE A, LOGRIECO A, BATTILANI P, et al. Transcriptional changes in developing maize kernels in response to fumonisin-producing and nonproducing strains of Fusarium verticillioides[J]. Plant Science, 2013, 210:183-192.DOI: 10.1016/j.plantsci.2013.05.020.
[51]
STUDT L, JANEVSKA S, NIEHAUS E M, et al. Two separate key enzymes and two pathway-specific transcription factors are involved in fusaric acid biosynthesis in Fusarium fujikuroi[J]. Environmental Microbiology, 2016, 18(3):936-956.DOI: 10.1111/1462-2920.13150.
[52]
JANEVSKA S, ARNDT B, NIEHAUS E M, et al. Gibepyrone biosynthesis in the rice pathogen Fusarium fujikuroi is facilitated by a small polyketide synthase gene cluster[J]. Journal of Biological Chemistry, 2016, 291(53):27403-27420.DOI: 10.1074/jbc.M116.753053.
[53]
DURAN R M, CARY J W, CALVO A M. Production of cyclopiazonic acid,aflatrem,and aflatoxin by Aspergillus flavus is regulated by veA,a gene necessary for sclerotial formation[J]. Applied Microbiology and Biotechnology, 2007, 73(5):1158-1168.DOI: 10.1007/s00253-006-0581-5.
[54]
ZHANG P, ZHOU S, WANG G, et al. Two transcription factors cooperatively regulate DHN melanin biosynthesis and development in Pestalotiopsis fici[J]. Molecular Microbiology, 2019, 112(2):649-666.DOI: 10.1111/mmi.14281.
[55]
DALMAIS B, SCHUMACHER J, MORAGA J, et al. The Botrytis cinerea phytotoxin botcinic acid requires two polyketide synthases for production and has a redundant role in virulence with botrydial[J]. Molecular Plant Pathology, 2011, 12(6):564-579.DOI: 10.1111/j.1364-3703.2010.00692.x.
[56]
CHEN Y, WANG J, YANG N, et al. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation[J]. Nature Communications, 2018, 9(1):3429.DOI: 10.1038/s41467-018-05683-7.
[57]
ELIAHU N, IGBARIA A, ROSE M S, et al. Melanin biosynthesis in the maize pathogen Cochliobolus heterostrophus depends on two mitogen-activated protein kinases,Chk1 and Mps1,and the transcription factor Cmr1[J]. Eukaryotic Cell, 2007, 6(3):421-429.DOI: 10.1128/EC.00264-06.
[58]
CREAMER R, HILLE D B, NEYAZ M, et al. Genetic relationships in the toxin-producing fungal endophyte,Alternaria oxytropis using polyketide synthase and non-ribosomal peptide synthase genes[J]. Journal of Fungi, 2021, 7(7):538.DOI: 10.3390/jof7070538.
[59]
BÖHNERT H U, FUDAL I, DIOH W, et al. A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice[J]. Plant Cell, 2004, 16(9):2499-2513.DOI: 10.1105/tpc.104.022715.
[60]
COLLEMARE J, PIANFETTI M, HOULLE A E, et al. Magnaporthe grisea avirulence gene ACE1 belongs to an infection-specific gene cluster involved in secondary metabolism[J]. New Phytologist, 2008, 179(1):196-208.DOI: 10.1111/j.1469-8137.2008.02459.x.
[61]
SESHIME Y, JUVVADI P R, TOKUOKA M, et al. Functional expression of the Aspergillus flavus PKS-NRPS hybrid CpaA involved in the biosynthesis of cyclopiazonic acid[J]. Bioorganic and Medicinal Chemistry Letters, 2009, 19(12):3288-3292.DOI: 10.1016/j.bmcl.2009.04.073.

基金

国家自然科学基金项目(32071768)
中国博士后科学基金资助项目(2023M731706)
黄山学院人才启动项目(2021xkjg009)

编辑: 王国栋
PDF(2128 KB)

Accesses

Citation

Detail

段落导航
相关文章

/