南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (3): 95-102.doi: 10.12302/j.issn.1000-2006.202405028
• 专题报道Ⅲ:智慧林业之林业与环境研究 • 上一篇 下一篇
收稿日期:
2024-05-20
接受日期:
2024-07-01
出版日期:
2025-05-30
发布日期:
2025-05-27
通讯作者:
*姜立春(jlichun@nefu.edu.cn),教授。作者简介:
张亦君(1751580673@qq.com)。
基金资助:
ZHANG Yijun(), ZHANG Zipeng, JIANG Lichun*(
)
Received:
2024-05-20
Accepted:
2024-07-01
Online:
2025-05-30
Published:
2025-05-27
摘要:
【目的】以大兴安岭落叶松为研究对象,基于胸高形率、正形率以及地面形率,分别构建含有不同形率的单木材积模型,并与传统的一元和二元材积模型以及东北地区落叶松部颁二元材积模型进行比较分析。【方法】基于落叶松实测数据,将树干不同高度处的一系列胸高形率、正形率和地面形率引入传统材积模型中,分别构建含有不同形率的二元和三元单木材积模型,引入方差函数消除模型拟合时产生的异方差现象。选用平均绝对误差(MAE)、均方根误差(RMSE)、相对均方根误差(RMSE%)、决定系数(R2)、赤池信息准则(AIC)作为模型的评价指标,对各模型进行拟合与检验分析。【结果】①引入相对树高50%处的胸高形率,构建的二元和三元模型拟合效果最好,其中引入胸高形率的三元材积模型较二元材积方程的RMSE降低44.4%;②引入相对树高50%处正形率所构建的三元材积模型效果最佳,较引入正形率的二元材积模型的RMSE降低23.1%;③对于地面形率来说,三元材积模型的变量取相对树高60%时模型拟合效果最好,二元材积模型的变量取相对树高50%时模型拟合效果最好,引入地面形率的三元材积模型比二元材积模型RMSE降低32.5%;④与东北地区使用的落叶松部颁材积方程相比,引入胸高形率的三元材积模型RMSE、MAE、RMSE%分别降低 62.85%、65.02%、67.14%。含有胸高形率的三元材积模型相对于传统二元材积方程RMSE降低60.41%。【结论】形率因子是重要的干形指标,无论是胸高形率、正形率还是地面形率引入传统材积模型中均能提高单木材积预测精度。含有胸高形率的三元立木材积模型预测效果最好。因此,推荐使用该模型预测大兴安岭落叶松的单木材积。
中图分类号:
张亦君,张兹鹏,姜立春. 不同形率对兴安落叶松单木材积预测精度的影响[J]. 南京林业大学学报(自然科学版), 2025, 49(3): 95-102.
ZHANG Yijun, ZHANG Zipeng, JIANG Lichun. Effects of different form quotients on prediction accuracy of individual tree volume of Larix gmelinii[J].Journal of Nanjing Forestry University (Natural Science Edition), 2025, 49(3): 95-102.DOI: 10.12302/j.issn.1000-2006.202405028.
表2
基于胸高形率模型参数值及拟合指标值"
形率 form quotient | a0 | a1 | a2 | a3 | RMSE | R2 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ⅱ | Ⅲ | Ⅱ | Ⅲ | Ⅱ | Ⅲ | Ⅲ | Ⅱ | Ⅲ | Ⅱ | Ⅲ | |
q0 | 0.000 5 | 0.000 06 | 2.140 7 | 1.776 2 | -0.218 8 | 1.130 1 | 0.303 5 | 0.109 5 | 0.109 5 | 0.967 4 | 0.967 4 |
q0.02 | 0.000 4 | 0.000 05 | 2.142 0 | 1.779 0 | -0.287 9 | 1.168 6 | 0.061 7 | 0.111 6 | 0.111 5 | 0.966 2 | 0.966 2 |
q0.04 | 0.000 5 | 0.000 08 | 2.139 5 | 1.792 7 | -1.234 2 | 1.026 0 | 0.984 5 | 0.160 3 | 0.108 4 | 0.946 7 | 0.968 1 |
q0.06 | 0.000 4 | 0.000 02 | 2.143 0 | 1.817 6 | -0.415 5 | 1.411 3 | 1.950 3 | 0.167 1 | 0.105 9 | 0.942 1 | 0.969 5 |
q0.08 | 0.000 4 | 0.000 03 | 2.185 3 | 1.844 5 | 1.321 9 | 1.229 4 | 1.657 2 | 0.161 2 | 0.102 9 | 0.946 1 | 0.971 3 |
q0.1 | 0.000 4 | 0.000 04 | 2.175 9 | 1.915 6 | 1.802 9 | 1.125 6 | 2.228 7 | 0.149 9 | 0.085 9 | 0.963 5 | 0.980 0 |
q0.15 | 0.000 5 | 0.000 04 | 2.167 8 | 1.882 2 | 1.426 7 | 1.155 3 | 1.979 7 | 0.147 2 | 0.070 0 | 0.955 1 | 0.986 7 |
q0.2 | 0.000 5 | 0.000 05 | 1.921 9 | 1.889 0 | -0.218 9 | 1.111 5 | 1.410 6 | 0.165 9 | 0.067 4 | 0.943 0 | 0.987 7 |
q0.3 | 0.000 5 | 0.000 05 | 2.173 1 | 1.915 2 | 1.128 5 | 1.096 9 | 1.191 5 | 0.126 4 | 0.056 6 | 0.966 9 | 0.991 3 |
q0.4 | 0.000 5 | 0.000 07 | 2.204 3 | 1.959 0 | 1.074 9 | 0.925 9 | 0.952 0 | 0.113 0 | 0.055 9 | 0.973 5 | 0.991 5 |
q0.5 | 0.000 4 | 0.000 08 | 2.246 0 | 1.983 5 | 0.980 4 | 0.866 5 | 0.891 4 | 0.096 1 | 0.053 4 | 0.980 9 | 0.992 3 |
q0.6 | 0.000 4 | 0.000 08 | 2.265 1 | 1.993 7 | 0.762 5 | 0.886 1 | 0.697 9 | 0.105 2 | 0.057 5 | 0.977 1 | 0.991 0 |
q0.7 | 0.000 5 | 0.000 06 | 2.237 6 | 1.961 5 | 0.555 4 | 1.012 4 | 0.571 4 | 0.117 0 | 0.070 4 | 0.971 6 | 0.986 5 |
q0.8 | 0.000 5 | 0.000 05 | 2.198 3 | 1.924 2 | 0.313 5 | 1.083 2 | 0.334 8 | 0.137 8 | 0.082 0 | 0.960 7 | 0.981 7 |
q0.9 | 0.000 5 | 0.000 05 | 2.163 0 | 1.889 0 | 0.171 9 | 1.111 5 | 1.410 7 | 0.151 8 | 0.089 0 | 0.952 3 | 0.978 5 |
表3
基于正形率模型参数值及拟合指标值"
形率 form quotient | a0 | a1 | a2 | a3 | RMSE | R2 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ⅱ | Ⅲ | Ⅱ | Ⅲ | Ⅱ | Ⅲ | Ⅲ | Ⅱ | Ⅲ | Ⅱ | Ⅲ | |
q0 | 0.000 5 | 0.000 05 | 2.179 0 | 1.895 6 | -0.328 4 | 1.082 9 | -0.350 4 | 0.168 0 | 0.131 3 | 0.943 2 | 0.965 4 |
q0.02 | 0.000 5 | 0.000 05 | 2.180 5 | 1.922 7 | -0.552 7 | 0.985 7 | -0.404 3 | 0.164 8 | 0.133 2 | 0.945 3 | 0.964 3 |
q0.04 | 0.000 5 | 0.000 08 | 2.188 0 | 1.972 7 | -1.602 9 | 0.805 2 | -1.221 6 | 0.142 1 | 0.118 9 | 0.959 4 | 0.971 5 |
q0.06 | 0.000 5 | 0.000 07 | 2.156 0 | 1.923 5 | -2.581 5 | 0.914 9 | -2.220 2 | 0.141 6 | 0.110 9 | 0.959 7 | 0.975 2 |
q0.08 | 0.000 4 | 0.000 05 | 2.164 1 | 1.902 0 | -3.227 3 | 1.027 6 | -3.105 1 | 0.154 6 | 0.115 8 | 0.952 0 | 0.973 0 |
q0.15 | 0.000 5 | 0.000 03 | 2.157 2 | 1.802 2 | 1.771 3 | 1.360 9 | 3.440 0 | 0.167 6 | 0.110 2 | 0.943 5 | 0.975 6 |
q0.2 | 0.000 5 | 0.000 03 | 2.191 7 | 1.921 2 | 1.736 0 | 1.079 8 | 1.891 1 | 0.151 3 | 0.106 1 | 0.953 9 | 0.977 3 |
q0.3 | 0.000 5 | 0.000 07 | 2.182 6 | 1.938 7 | 1.333 4 | 0.943 7 | 1.295 6 | 0.136 9 | 0.095 5 | 0.962 3 | 0.981 6 |
q0.4 | 0.000 5 | 0.000 08 | 2.203 5 | 1.982 8 | 1.204 3 | 0.848 7 | 1.039 0 | 0.122 5 | 0.087 5 | 0.969 8 | 0.984 6 |
q0.5 | 0.000 4 | 0.000 10 | 2.251 8 | 2.058 1 | 1.016 5 | 0.672 8 | 0.853 7 | 0.105 4 | 0.081 1 | 0.977 6 | 0.986 8 |
q0.6 | 0.000 4 | 0.000 07 | 2.277 1 | 2.047 9 | 0.716 9 | 0.844 8 | 0.624 1 | 0.118 4 | 0.084 1 | 0.971 8 | 0.985 7 |
q0.7 | 0.000 4 | 0.000 05 | 2.250 0 | 1.994 0 | 0.494 1 | 1.018 4 | 0.476 8 | 0.137 1 | 0.094 6 | 0.962 2 | 0.982 0 |
q0.8 | 0.000 4 | 0.000 04 | 2.233 1 | 1.959 7 | 0.270 0 | 1.148 9 | 0.301 1 | 0.151 4 | 0.106 4 | 0.953 8 | 0.977 2 |
q0.9 | 0.000 5 | 0.000 03 | 2.193 2 | 1.894 8 | 0.125 8 | 1.280 4 | 0.192 2 | 0.165 0 | 0.115 1 | 0.945 2 | 0.973 3 |
表4
基于地面形率模型参数值及拟合指标值"
形率 form quotient | a0 | a1 | a2 | a3 | RMSE | R2 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ⅱ | Ⅲ | Ⅱ | Ⅲ | Ⅱ | Ⅲ | Ⅲ | Ⅱ | Ⅲ | Ⅱ | Ⅲ | |
q0.02 | 0.000 4 | 0.000 04 | 2.186 0 | 1.891 5 | 0.069 3 | 1.111 9 | 2.295 6 | 0.173 6 | 0.136 7 | 0.939 4 | 0.962 4 |
q0.04 | 0.000 4 | 0.000 04 | 2.189 0 | 1.891 5 | -0.053 3 | 1.099 6 | 0.183 3 | 0.173 7 | 0.137 8 | 0.939 3 | 0.961 8 |
q0.06 | 0.000 4 | 0.000 04 | 2.185 6 | 1.900 9 | 0.148 5 | 1.081 8 | 0.227 9 | 0.172 9 | 0.136 7 | 0.939 8 | 0.962 4 |
q0.08 | 0.000 4 | 0.000 04 | 2.183 1 | 1.901 0 | 0.246 3 | 1.074 1 | 0.268 7 | 0.170 9 | 0.135 0 | 0.941 2 | 0.963 3 |
q0.1 | 0.000 5 | 0.000 05 | 2.179 0 | 1.895 6 | 0.328 4 | 1.082 9 | 0.350 4 | 0.168 0 | 0.131 2 | 0.943 2 | 0.965 4 |
q0.15 | 0.000 5 | 0.000 05 | 2.171 8 | 1.876 2 | 0.358 3 | 1.133 5 | 0.426 6 | 0.166 2 | 0.126 0 | 0.944 4 | 0.968 0 |
q0.2 | 0.000 5 | 0.000 05 | 2.177 0 | 1.891 9 | 0.387 2 | 1.101 1 | 0.419 6 | 0.161 9 | 0.122 4 | 0.947 2 | 0.969 8 |
q0.3 | 0.000 5 | 0.000 06 | 2.173 4 | 1.897 2 | 0.446 4 | 1.066 0 | 0.463 0 | 0.153 8 | 0.113 5 | 0.952 4 | 0.974 1 |
q0.4 | 0.000 6 | 0.000 06 | 2.181 2 | 1.918 4 | 0.521 9 | 1.021 6 | 0.508 8 | 0.142 4 | 0.102 2 | 0.959 2 | 0.979 0 |
q0.5 | 0.000 6 | 0.000 09 | 2.213 4 | 1.978 9 | 0.636 5 | 0.870 2 | 0.572 6 | 0.121 0 | 0.086 3 | 0.970 5 | 0.985 1 |
q0.6 | 0.000 5 | 0.000 07 | 2.245 0 | 1.998 8 | 0.549 4 | 0.937 2 | 0.500 5 | 0.121 1 | 0.081 7 | 0.970 4 | 0.986 5 |
q0.7 | 0.000 5 | 0.000 05 | 2.234 9 | 1.969 2 | 0.456 1 | 1.062 6 | 0.445 4 | 0.131 0 | 0.084 8 | 0.965 5 | 0.985 5 |
q0.8 | 0.000 5 | 0.000 04 | 2.225 2 | 1.943 8 | 0.255 1 | 1.062 6 | 0.979 5 | 0.148 1 | 0.100 9 | 0.955 9 | 0.979 5 |
q0.9 | 0.000 5 | 0.000 03 | 2.190 2 | 1.885 4 | 0.133 0 | 1.305 5 | 0.192 8 | 0.162 1 | 0.110 3 | 0.947 1 | 0.975 5 |
表6
落叶松材积模型误差方差函数结果"
方差函数 error function | 变量 variable | 赤池信息准则 AIC | 贝叶斯准则 BIC | ||||||
---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (12) | (13) | (1) | (2) | (12) | (13) | ||
指数函数 exponential function | V | -292.6 | -405.2 | -295.2 | -452.7 | -280.7 | -390.2 | -282.2 | -436.4 |
-305.9 | -405.0 | -310.1 | -470.9 | -293.9 | -390.1 | -297.1 | -454.6 | ||
D | -331.9 | -444.9 | -342.7 | -497.9 | -319.9 | -430.0 | -329.7 | -481.6 | |
-327.3 | -453.7 | -349.8 | -501.9 | -315.4 | -438.7 | -336.8 | -485.6 | ||
幂函数 power function | V | -333.2 | -457.6 | -344.8 | -506.5 | -321.2 | -442.7 | -331.9 | -490.3 |
-341.6 | -456.0 | -355.5 | -512.7 | -329.7 | -441.1 | -342.5 | -496.5 | ||
D | 5.8 | -59.6 | 77.7 | 135.2 | 17.7 | -44.7 | 90.7 | 151.5 | |
5.8 | -59.6 | 77.7 | 135.2 | 17.7 | -44.7 | 90.7 | 151.5 | ||
常数加幂函数 constant plus power function | V | -331.5 | -455.6 | -343.6 | -505.0 | -316.6 | -437.7 | -327.3 | -485.5 |
-339.6 | -454.0 | -353.5 | -510.9 | -324.7 | -436.1 | -337.3 | -491.4 | ||
D | 7.7 | -57.6 | -295.2 | 137.2 | 22.7 | -39.7 | 95.9 | 156.7 | |
7.7 | -57.6 | -310.1 | 137.2 | 22.7 | -39.7 | 95.9 | 156.7 |
表7
单木材积模型检验"
模型 model | 自变量 independent variables | MAE | RMSE% | RMSE | R2 | AIC |
---|---|---|---|---|---|---|
(2) | D、H | 0.147 8 | 13.40 | 0.195 0 | 0.911 1 | -138.886 7 |
(13) | D、H、qb(0.5) | 0.058 0 | 5.30 | 0.077 2 | 0.986 1 | -220.435 8 |
(15) | D、H、qn(0.5) | 0.059 9 | 11.37 | 0.086 3 | 0.982 7 | -225.294 9 |
(17) | D、H、qg(0.6) | 0.091 2 | 8.36 | 0.121 7 | 0.965 4 | -180.376 6 |
(5) | D、H | 0.165 8 | 16.13 | 0.207 8 | 0.834 9 | -133.279 5 |
[1] | ZAVARZIN V V, LEBEDEV A V, GEMONOV A V. Estimation and validation of stem volume equations for Pinus sibirica in Russia[J]. IOP Conference Series:Earth and Environmental Science, 2021, 677(5):052117.DOI: 10.1088/1755-1315/677/5/052117. |
[2] | ÖZCELIK R, ALTINKAYA H. Comparison of tree volume equations for brutian pine stands in Egirdir district[J]. Turkish Journal of Forestry Türkiye Ormanc Dergisi, 2019(84):149-156.DOI: 10.18182/tjf.566019. |
[3] | 曾伟生, 贺东北, 蒲莹, 等. 含地域和起源因子的马尾松立木生物量与材积方程系统[J]. 林业科学, 2019, 55(2):75-86. |
ZENG W S, HE D B, PU Y, et al. Individual tree biomass and volume equation system with region and origin in variables for Pinus massoniana in China[J]. Scientia Silvae Sinicae, 2019, 55(2):75-86.DOI: 10.11707/j.1001-7488.20190208. | |
[4] | TURNBLOM E C, BURK T E. Adjusting volume table estimates using normal form quotient[J]. Canadian Journal of Forest Research, 1996, 26 (1): 155-158. DOI: 10.1139/x26-018. |
[5] | AKINDELE S O, LEMAY V M. Development of tree volume equations for common timber species in the tropical rain forest area of Nigeria[J]. Forest Ecology and Management, 2006, 226(1/2/3):41-48.DOI: 10.1016/j.foreco.2006.01.022. |
[6] | LUOMA V, SAARINEN N, KANKARE V, et al. Examining changes in stem taper and volume growth with two-date 3D point clouds[J]. Forests, 2019, 10 (5):0382.DOI: 10.3390/f10050382. |
[7] | KERSHAW J A JR, DUCEY M J, BEERS T W, et al. Forest mensuration[M]. 5th ed. New York: John Wiley & Sons, 2016:1-592. DOI: 10.1002/9781118902028. |
[8] | PEREIRA J E S, BARRETO-GARCIA P A B, PAULA A, et al. Form quotient in estimating Caatinga tree volume[J]. Journal of Sustainable Forestry, 2021, 40(5): 508-517. DOI: 10.1080/10549811.2020.1779090. |
[9] | 李悦黎, 杜纪山. 正形率系列特性及其应用的研究[J]. 西北林学院学报, 1994, 9(3):53-58. |
LI Y L, DU J S. Characteristics and application of the sequential normal form quotient[J]. Journal of Northwest Forestry University, 1994, 9(3):53-58. | |
[10] | BARAL S, NEUMANN M, BASNYAT B, et al. Form factors of an economically valuable sal tree (Shorea robusta) of Nepal[J]. Forests, 2020, 11(7):754.DOI: 10.3390/f11070754. |
[11] | KONG L, YANG H, KANG X, et al. Stand volume equation developed from an experimental form factor with the breast height form quotient[J]. Taiwan Journal of Forest Science, 2012, 27(4): 357-367. DOI:10.7075/TJFS.201212.0357. |
[12] | 种雨丝, 何培, 张兹鹏, 等. 应用地基激光雷达三维点云数据构建长白落叶松树干削度方程[J]. 东北林业大学学报, 2024, 52(3):69-75. |
CHONG Y S, HE P, ZHANG Z P, et al. Construction of a Larix gmelinii trunk taper equation using terrestrial laser scanning three-dimensional point cloud data[J]. Journal of Northeast Forestry University, 2024, 52(3):69-75.DOI: 10.13759/j.cnki.dlxb.2024.03.006. | |
[13] | 花伟成, 田佳榕, 孙心雨, 等. 基于TLS数据的杨树削度方程建立及材积估算[J]. 南京林业大学学报(自然科学版), 2021, 45(4):41-48. |
HUA W C, TIAN J R, SUN X Y, et al. Assessing the stem taper function and volume estimation of poplar (Populus)by terrestrial laser scanning[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(4):41-48.DOI: 10.12302/j.issn.1000-2006.202006023. | |
[14] | 高谢雨, 董利虎, 郝元朔. 基于TLS的抚育间伐对长白落叶松干形的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(6):85-94. |
GAO X Y, DONG L H, HAO Y S. Effects of thinning on Larix olgensis plantation stem form based on TLS[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2023, 47(6):85-94.DOI: 10.12302/j.issn.1000-2006.202211012. | |
[15] | KALLIOVIRTA J, LAASASENAHO J, KANGAS A. Evaluation of the laser-relascope[J]. Forest Ecology and Management, 2005, 204(2/3):181-194.DOI: 10.1016/j.foreco.2004.09.020. |
[16] | 中华人民共和国农林部. 立木材积表:LY 208—77[M]. 北京: 技术标准出版社,1978. |
Agriculture and Forestry Ministry of China. Tree volume tables: LY 208—77[M]. Beijing: Technical Standards Press, 1978. | |
[17] | 李凤日. 测树学[M]. 4版. 北京: 中国林业出版社,2019:1-397. |
LI F R. Forest mensuration[M]. 4th ed. Beijing: China Forestry Publishing House,2019:1-397. | |
[18] | YUSUP A, HALIK Ü, KEYIMU M, et al. Trunk volume estimation of irregular shaped Populus euphratica riparian forest using TLS point cloud data and multivariate prediction models[J]. Forest Ecosystems, 2023,10:100082.DOI: 10.1016/j.fecs.2022.100082. |
[19] | MCROBERTS R E, WESTFALL J A. Effects of uncertainty in model predictions of individual tree volume on large area volume estimates[J]. Forest Science, 2014, 60(1):34-42.DOI: 10.5849/forsci.12-141. |
[20] | WANG M L, KANE M B, BORDERS B E, et al. Direct variance-covariance modeling as an alternative to the traditional guide curve approach for prediction of dominant heights[J]. Forest Science, 2014, 60(4):652-662.DOI: 10.5849/forsci.13-019. |
[21] | 曾伟生. 我国主要树种二元立木材积表的检验[J]. 林业资源管理, 2018(5):35-41. |
ZENG W S. Validation of two-variable tree volume tables for main tree species in China[J]. Forest Resources Management, 2018(5):35-41.DOI: 10.13466/j.cnki.lyzygl.2018.05.007. | |
[22] | 曾伟生, 杨学云. 我国一元立木材积表基本现状分析与估计误差检验[J]. 林业资源管理, 2023(2):43-49. |
ZENG W S, YANG X Y. Analysis of general status and examination of estimation errors for one-variable tree volume tables in China[J]. Forest Resources Management, 2023(2):43-49.DOI: 10.13466/j.cnki.lyzygl.2023.02.006. | |
[23] | RUSTAGI K P, LOVELESS R S. Improved cubic volume prediction using a new measure of form factor[J]. Forest Ecology and Management, 1991, 40(1/2):1-11.DOI: 10.1016/0378-1127(91)90087-C. |
[24] | ADEKUNLE V A J, NAIR K N, SRIVASTAVA A K, et al. Models and form factors for stand volume estimation in natural forest ecosystems:a case study of Katarniaghat Wildlife Sanctuary (KGWS),Bahraich District,India[J]. Journal of Forestry Research, 2013, 24(2):217-226.DOI: 10.1007/s11676-013-0347-8. |
[25] | TENZIN J, WANGCHUK T, HASENAUER H. Form factor functions for nine commercial tree species in Bhutan[J]. Forestry, 2016,90: 359-366.DOI: 10.1093/forestry/cpw044. |
[26] | BI H Q. Improving stem volume estimation of regrowth Eucalyptus fastigata with a lower stem form quotient[J]. Australian Forestry, 1994, 57(3):98-104.DOI: 10.1080/00049158.1994.10676123. |
[27] | 张兹鹏, 王君杰, 刘索名, 等. 形率对白桦单木材积和生物量预测精度的影响[J]. 林业科学, 2022, 58(5):31-39. |
ZHANG Z P, WANG J J, LIU S M, et al. Effect of form quotient on prediction accuracy of individual tree volume and biomass of Betula platyphylla[J]. Scientia Silvae Sinicae, 2022, 58(5):31-39.DOI: 10.11707/j.1001-7488.20220504. | |
[28] | CHAPAGAIN T R, SHARMA R P. Modeling form factors for sal (Shorea robusta Gaertn.) using tree and stand measures,and random effects[J]. Forest Ecology and Management, 2021,482:118807.DOI: 10.1016/j.foreco.2020.118807. |
[29] | ADESOYE P O, POPOOLA O D. Determinants of stem form:application to Tectona grandis(Linn.F) stands[J]. Journal of Sustainable Forestry, 2016, 35(5):338-354.DOI: 10.1080/10549811.2016.1177730. |
[30] | 靳晓东, 姜立春. 基于树干不同形率的樟子松立木材积方程研建[J]. 北京林业大学学报, 2020, 42(3):78-86. |
JIN X D, JIANG L C. Equation construction on standing tree volume of Pinus sylvestris var. mongolica based on different form quotients of trunk[J]. Journal of Beijing Forestry University, 2020, 42(3):78-86.DOI: 10.12171/j.1000-1522.20190047. |
[1] | 韩新宇, 高露双, 秦莉, 庞荣荣, 刘鸣谦, 朱一泓, 田益雨, 张金. 林分密度对兴安落叶松径向生长-气候关系的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 182-190. |
[2] | 左壮, 张韫, 崔晓阳. 火烧对兴安落叶松林土壤氮形态和含量的初期影响[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 147-154. |
[3] | 路文燕, 董灵波, 田园, 汪莎杉, 曲宣怡, 魏巍, 刘兆刚. 基于树种组成的大兴安岭天然林主要树种树高-胸径曲线研究[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 157-165. |
[4] | 高羽, 李静, 刘洋, 乌雅瀚, 巩家星, 辛启睿. 结构方程模型在兴安落叶松林生长中的应用[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 38-46. |
[5] | 谢立红, 黄庆阳, 曹宏杰, 杨帆, 王继丰, 倪红伟. 气候变暖对黑龙江省五大连池兴安落叶松径向生长的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 150-158. |
[6] | 王君杰, 姜立春*. 基于线性分位数组合的兴安落叶松冠幅预测[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 161-170. |
[7] | 王冰, 张鹏杰, 张秋良. 不同林型兴安落叶松林土壤团聚体及其有机碳特征[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 15-24. |
[8] | 何培, 夏宛琦, 姜立春. 基于非参数方法的落叶松树干削度方程[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 184-192. |
[9] | 周司涵, 张韫, 崔晓阳. 兴安落叶松林火烧迹地土壤速效钾时空动态分析[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 141-147. |
[10] | 魏玉龙, 张秋良. 兴安落叶松林缘天然更新与立地环境因子的相关分析[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 165-172. |
[11] | 宋浩,满秀玲,段北星,刘家霖. 兴安落叶松天然林新老枝叶光合能力及水分利用效率研究[J]. 南京林业大学学报(自然科学版), 2018, 42(05): 53-58. |
[12] | 石磊,盛后财,满秀玲,蔡体久. 兴安落叶松林降雨再分配及其穿透雨的空间异质性[J]. 南京林业大学学报(自然科学版), 2017, 41(02): 90-96. |
[13] | 刘玉杰,满秀玲. 修正Gash模型在兴安落叶松天然林林冠截留中的应用[J]. 南京林业大学学报(自然科学版), 2016, 40(04): 81-88. |
[14] | 郭莹洁,赵荣军,钟永,任海青. 兴安落叶松成熟材单一年轮顺纹力学模型[J]. 南京林业大学学报(自然科学版), 2015, 39(01): 177-180. |
[15] | 郭莹洁,赵荣军,钟永,任海青. 兴安落叶松成熟材指接材抗拉破坏载荷力学模型[J]. 南京林业大学学报(自然科学版), 2014, 38(05): 20-24. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||