不同形率对兴安落叶松单木材积预测精度的影响

张亦君, 张兹鹏, 姜立春

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (3) : 95-102.

PDF(1638 KB)
PDF(1638 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (3) : 95-102. DOI: 10.12302/j.issn.1000-2006.202405028
专题报道Ⅲ:智慧林业之林业与环境研究

不同形率对兴安落叶松单木材积预测精度的影响

作者信息 +

Effects of different form quotients on prediction accuracy of individual tree volume of Larix gmelinii

Author information +
文章历史 +

摘要

【目的】以大兴安岭落叶松为研究对象,基于胸高形率、正形率以及地面形率,分别构建含有不同形率的单木材积模型,并与传统的一元和二元材积模型以及东北地区落叶松部颁二元材积模型进行比较分析。【方法】基于落叶松实测数据,将树干不同高度处的一系列胸高形率、正形率和地面形率引入传统材积模型中,分别构建含有不同形率的二元和三元单木材积模型,引入方差函数消除模型拟合时产生的异方差现象。选用平均绝对误差(MAE)、均方根误差(RMSE)、相对均方根误差(RMSE%)、决定系数(R2)、赤池信息准则(AIC)作为模型的评价指标,对各模型进行拟合与检验分析。【结果】①引入相对树高50%处的胸高形率,构建的二元和三元模型拟合效果最好,其中引入胸高形率的三元材积模型较二元材积方程的RMSE降低44.4%;②引入相对树高50%处正形率所构建的三元材积模型效果最佳,较引入正形率的二元材积模型的RMSE降低23.1%;③对于地面形率来说,三元材积模型的变量取相对树高60%时模型拟合效果最好,二元材积模型的变量取相对树高50%时模型拟合效果最好,引入地面形率的三元材积模型比二元材积模型RMSE降低32.5%;④与东北地区使用的落叶松部颁材积方程相比,引入胸高形率的三元材积模型RMSE、MAE、RMSE%分别降低 62.85%、65.02%、67.14%。含有胸高形率的三元材积模型相对于传统二元材积方程RMSE降低60.41%。【结论】形率因子是重要的干形指标,无论是胸高形率、正形率还是地面形率引入传统材积模型中均能提高单木材积预测精度。含有胸高形率的三元立木材积模型预测效果最好。因此,推荐使用该模型预测大兴安岭落叶松的单木材积。

Abstract

【Objective】This study took the Larix gmelinii in the Greater Khingan Mountains as the research subject. Based on breast height form quotient, normal form quotient, and ground form quotient, individual tree volume models incorporating different form factors were constructed. These models were then compared and analyzed against traditional one-variable and two-variable volume models, as well as the two-variable volume model for L. gmelinii in Northeast China.【Method】Based on the measured data of L. gmelinii, a series of breast height form quotients, normal form quotients, and ground form quotients at different heights of the trunk were introduced into the traditional volume model. One-variable and two-variable tree volume models with different form quotients were constructed, respectively, and variance functions were introduced to eliminate the heteroscedasticity in the fitting process of each volume model. The mean absolute error (MAE), root mean square error (RMSE), relative root mean square error (RMSE%), determination coefficient (R2), and Akaike information criterion (AIC) were used as evaluation indexes to fit and analyze each model.【Result】(1) The two-variable and three-variable models constructed with the introduction of the breast height form quotient at 50% relative tree height fitted best, with the three-variable tree volume model reducing the RMSE by 44.4% compared to the two-variable tree volume equation. (2) The three-variable volume model constructed by introducing the normal form quotient,at 50% of the relative tree height performed the best, reducing the RMSE by 23.1% compared to the two-variable volume model that incorporated the ground form quotient. (3) For the ground form quotient, the three-variable volume model achieved the best fit when the variable was set at 60% of the relative tree height, while the binary volume model performed optimally when the variable was set at 50% of the relative tree height. The three-variable volume model incorporating the ground form quotient reduced the RMSE by 32.5% compared to the two-variable volume model. (4) Compared to the two-variable volume equation for Larix gmelinii used in Northeast China, the three-variable volume model incorporating the breast height form quotient reduced the RMSE, MAE, and RMSE% by 62.85%, 65.02%, and 67.14%, respectively. The three-variable volume model containing the breast height form quotient reduced the RMSE by 60.41% compared to the traditional two-variable tree volume equations.【Conclusion】The form quotient is an important index of stem form, and the introduction of breast height form quotient, normal form quotient, and ground form quotient into the traditional volume models can improve the accuracy of predicting tree volume. The three-variable tree volume model has the best prediction effect with the introduction of the breast height form quotient. Therefore, it is recommended to use this model to predict the tree stem volume of L. gmelinii in the region in the future.

关键词

兴安落叶松 / 胸高形率 / 正形率 / 地面形率 / 单木材积

Key words

Larix gmelinii / breast height form quotient / normal form quotient / ground form quotient / individual tree volume

引用本文

导出引用
张亦君, 张兹鹏, 姜立春. 不同形率对兴安落叶松单木材积预测精度的影响[J]. 南京林业大学学报(自然科学版). 2025, 49(3): 95-102 https://doi.org/10.12302/j.issn.1000-2006.202405028
ZHANG Yijun, ZHANG Zipeng, JIANG Lichun. Effects of different form quotients on prediction accuracy of individual tree volume of Larix gmelinii[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(3): 95-102 https://doi.org/10.12302/j.issn.1000-2006.202405028
中图分类号: S758   

参考文献

[1]
ZAVARZIN V V, LEBEDEV A V, GEMONOV A V. Estimation and validation of stem volume equations for Pinus sibirica in Russia[J]. IOP Conference Series:Earth and Environmental Science, 2021, 677(5):052117.DOI: 10.1088/1755-1315/677/5/052117.
[2]
ÖZCELIK R, ALTINKAYA H. Comparison of tree volume equations for brutian pine stands in Egirdir district[J]. Turkish Journal of Forestry Türkiye Ormanc Dergisi, 2019(84):149-156.DOI: 10.18182/tjf.566019.
[3]
曾伟生, 贺东北, 蒲莹, 等. 含地域和起源因子的马尾松立木生物量与材积方程系统[J]. 林业科学, 2019, 55(2):75-86.
ZENG W S, HE D B, PU Y, et al. Individual tree biomass and volume equation system with region and origin in variables for Pinus massoniana in China[J]. Scientia Silvae Sinicae, 2019, 55(2):75-86.DOI: 10.11707/j.1001-7488.20190208.
[4]
TURNBLOM E C, BURK T E. Adjusting volume table estimates using normal form quotient[J]. Canadian Journal of Forest Research, 1996, 26 (1): 155-158. DOI: 10.1139/x26-018.
[5]
AKINDELE S O, LEMAY V M. Development of tree volume equations for common timber species in the tropical rain forest area of Nigeria[J]. Forest Ecology and Management, 2006, 226(1/2/3):41-48.DOI: 10.1016/j.foreco.2006.01.022.
[6]
LUOMA V, SAARINEN N, KANKARE V, et al. Examining changes in stem taper and volume growth with two-date 3D point clouds[J]. Forests, 2019, 10 (5):0382.DOI: 10.3390/f10050382.
[7]
KERSHAW J A JR, DUCEY M J, BEERS T W, et al. Forest mensuration[M]. 5th ed. New York: John Wiley & Sons, 2016:1-592. DOI: 10.1002/9781118902028.
[8]
PEREIRA J E S, BARRETO-GARCIA P A B, PAULA A, et al. Form quotient in estimating Caatinga tree volume[J]. Journal of Sustainable Forestry, 2021, 40(5): 508-517. DOI: 10.1080/10549811.2020.1779090.
[9]
李悦黎, 杜纪山. 正形率系列特性及其应用的研究[J]. 西北林学院学报, 1994, 9(3):53-58.
LI Y L, DU J S. Characteristics and application of the sequential normal form quotient[J]. Journal of Northwest Forestry University, 1994, 9(3):53-58.
[10]
BARAL S, NEUMANN M, BASNYAT B, et al. Form factors of an economically valuable sal tree (Shorea robusta) of Nepal[J]. Forests, 2020, 11(7):754.DOI: 10.3390/f11070754.
[11]
KONG L, YANG H, KANG X, et al. Stand volume equation developed from an experimental form factor with the breast height form quotient[J]. Taiwan Journal of Forest Science, 2012, 27(4): 357-367. DOI:10.7075/TJFS.201212.0357.
[12]
种雨丝, 何培, 张兹鹏, 等. 应用地基激光雷达三维点云数据构建长白落叶松树干削度方程[J]. 东北林业大学学报, 2024, 52(3):69-75.
CHONG Y S, HE P, ZHANG Z P, et al. Construction of a Larix gmelinii trunk taper equation using terrestrial laser scanning three-dimensional point cloud data[J]. Journal of Northeast Forestry University, 2024, 52(3):69-75.DOI: 10.13759/j.cnki.dlxb.2024.03.006.
[13]
花伟成, 田佳榕, 孙心雨, 等. 基于TLS数据的杨树削度方程建立及材积估算[J]. 南京林业大学学报(自然科学版), 2021, 45(4):41-48.
HUA W C, TIAN J R, SUN X Y, et al. Assessing the stem taper function and volume estimation of poplar (Populus)by terrestrial laser scanning[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(4):41-48.DOI: 10.12302/j.issn.1000-2006.202006023.
[14]
高谢雨, 董利虎, 郝元朔. 基于TLS的抚育间伐对长白落叶松干形的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(6):85-94.
GAO X Y, DONG L H, HAO Y S. Effects of thinning on Larix olgensis plantation stem form based on TLS[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2023, 47(6):85-94.DOI: 10.12302/j.issn.1000-2006.202211012.
[15]
KALLIOVIRTA J, LAASASENAHO J, KANGAS A. Evaluation of the laser-relascope[J]. Forest Ecology and Management, 2005, 204(2/3):181-194.DOI: 10.1016/j.foreco.2004.09.020.
[16]
中华人民共和国农林部. 立木材积表:LY 208—77[M]. 北京: 技术标准出版社,1978.
Agriculture and Forestry Ministry of China. Tree volume tables: LY 208—77[M]. Beijing: Technical Standards Press, 1978.
[17]
李凤日. 测树学[M]. 4版. 北京: 中国林业出版社,2019:1-397.
LI F R. Forest mensuration[M]. 4th ed. Beijing: China Forestry Publishing House,2019:1-397.
[18]
YUSUP A, HALIK Ü, KEYIMU M, et al. Trunk volume estimation of irregular shaped Populus euphratica riparian forest using TLS point cloud data and multivariate prediction models[J]. Forest Ecosystems, 2023,10:100082.DOI: 10.1016/j.fecs.2022.100082.
[19]
MCROBERTS R E, WESTFALL J A. Effects of uncertainty in model predictions of individual tree volume on large area volume estimates[J]. Forest Science, 2014, 60(1):34-42.DOI: 10.5849/forsci.12-141.
[20]
WANG M L, KANE M B, BORDERS B E, et al. Direct variance-covariance modeling as an alternative to the traditional guide curve approach for prediction of dominant heights[J]. Forest Science, 2014, 60(4):652-662.DOI: 10.5849/forsci.13-019.
[21]
曾伟生. 我国主要树种二元立木材积表的检验[J]. 林业资源管理, 2018(5):35-41.
ZENG W S. Validation of two-variable tree volume tables for main tree species in China[J]. Forest Resources Management, 2018(5):35-41.DOI: 10.13466/j.cnki.lyzygl.2018.05.007.
[22]
曾伟生, 杨学云. 我国一元立木材积表基本现状分析与估计误差检验[J]. 林业资源管理, 2023(2):43-49.
ZENG W S, YANG X Y. Analysis of general status and examination of estimation errors for one-variable tree volume tables in China[J]. Forest Resources Management, 2023(2):43-49.DOI: 10.13466/j.cnki.lyzygl.2023.02.006.
[23]
RUSTAGI K P, LOVELESS R S. Improved cubic volume prediction using a new measure of form factor[J]. Forest Ecology and Management, 1991, 40(1/2):1-11.DOI: 10.1016/0378-1127(91)90087-C.
[24]
ADEKUNLE V A J, NAIR K N, SRIVASTAVA A K, et al. Models and form factors for stand volume estimation in natural forest ecosystems:a case study of Katarniaghat Wildlife Sanctuary (KGWS),Bahraich District,India[J]. Journal of Forestry Research, 2013, 24(2):217-226.DOI: 10.1007/s11676-013-0347-8.
[25]
TENZIN J, WANGCHUK T, HASENAUER H. Form factor functions for nine commercial tree species in Bhutan[J]. Forestry, 2016,90: 359-366.DOI: 10.1093/forestry/cpw044.
[26]
BI H Q. Improving stem volume estimation of regrowth Eucalyptus fastigata with a lower stem form quotient[J]. Australian Forestry, 1994, 57(3):98-104.DOI: 10.1080/00049158.1994.10676123.
[27]
张兹鹏, 王君杰, 刘索名, 等. 形率对白桦单木材积和生物量预测精度的影响[J]. 林业科学, 2022, 58(5):31-39.
ZHANG Z P, WANG J J, LIU S M, et al. Effect of form quotient on prediction accuracy of individual tree volume and biomass of Betula platyphylla[J]. Scientia Silvae Sinicae, 2022, 58(5):31-39.DOI: 10.11707/j.1001-7488.20220504.
[28]
CHAPAGAIN T R, SHARMA R P. Modeling form factors for sal (Shorea robusta Gaertn.) using tree and stand measures,and random effects[J]. Forest Ecology and Management, 2021,482:118807.DOI: 10.1016/j.foreco.2020.118807.
[29]
ADESOYE P O, POPOOLA O D. Determinants of stem form:application to Tectona grandis(Linn.F) stands[J]. Journal of Sustainable Forestry, 2016, 35(5):338-354.DOI: 10.1080/10549811.2016.1177730.
[30]
靳晓东, 姜立春. 基于树干不同形率的樟子松立木材积方程研建[J]. 北京林业大学学报, 2020, 42(3):78-86.
JIN X D, JIANG L C. Equation construction on standing tree volume of Pinus sylvestris var. mongolica based on different form quotients of trunk[J]. Journal of Beijing Forestry University, 2020, 42(3):78-86.DOI: 10.12171/j.1000-1522.20190047.

基金

国家自然科学基金项目(32271866)

编辑: 李燕文
PDF(1638 KB)

Accesses

Citation

Detail

段落导航
相关文章

/