不同间伐恢复年限对秦岭松栎混交林土壤甲烷通量的影响

王祥福, 盛启林, 李愿会, 冯思宇, 刘渤然, 马雪红, 李丽, 王荣女, 王维枫

南京林业大学学报(自然科学版) ›› 2026, Vol. 50 ›› Issue (1) : 142-149.

PDF(1737 KB)
PDF(1737 KB)
南京林业大学学报(自然科学版) ›› 2026, Vol. 50 ›› Issue (1) : 142-149. DOI: 10.12302/j.issn.1000-2006.202407005
研究论文

不同间伐恢复年限对秦岭松栎混交林土壤甲烷通量的影响

作者信息 +

Temporal effects of thinning on soil methane flux of pine-oak mixed forests in Qinling Mountains

Author information +
文章历史 +

摘要

【目的】 探究抚育间伐对秦岭松栎混交林土壤甲烷(CH4)通量的影响,为森林土壤CH4通量管理提供科学依据。【方法】以秦岭松栎混交林为研究对象,对未间伐样地(CK)、间伐5 a、间伐13 a的样地采用静态箱-气相色谱法监测土壤CH4通量,并通过单因素方差分析、重复测量的方差分析以及线性回归确定了间伐措施和环境因素如何影响土壤CH4通量的变化。【结果】与CK相比,间伐5 a样地的土壤温度(ST)升高2.73 ℃(P<0.05)。间伐13 a样地的土壤pH增大0.32,铵态氮含量显著降低(P <0.05),其他土壤理化性质在间伐前后无显著变化。间伐后不同恢复时间的林地土壤湿度(土壤含水率,SWC)、ST和土壤总磷(TP)含量发生显著变化(P <0.05):随着恢复时间延长,SWC增加10.21%,ST降低3.08 ℃,TP质量分数增加0.21 g/kg。秦岭山地森林土壤均呈现为甲烷汇,并于夏季7月出现吸收峰。间伐后林地CH4吸收呈现先增加(间伐5 a vs CK,P<0.05)后降低到未间伐水平(间伐13 a vs CK,P>0.05)的趋势。ST每增加1 ℃,土壤CH4吸收速率增加0.09~0.22 mg/(m2·d);土壤湿度每增加1%,土壤CH4吸收速率降低0.03~0.10 mg/(m2·d),且短恢复时间(5 a)的间伐有较高的湿度和温度敏感性。【结论】间伐后土壤温度升高、湿度降低,从而增强了土壤对CH4氧化的能力。随着林冠恢复,CH4吸收效应逐渐减弱,表明将间伐间隔期控制在13 a以下可维持较高的土壤甲烷汇功能。

Abstract

【Objective】 This study aims to elucidate the temporal effects of thinning on soil methane (CH4) fluxes in mixed pine-oak forests in the Qinling Mountains, providing scientific evidence for optimizing forest management strategies to regulate soil CH4 fluxes. 【Method】A chronosequence approach was adopted to examine three treatment groups: unthinned (CK), five-year post-thinning (5 a), and 13-year post-thinning (13 a). Soil CH4 fluxes were monitored monthly using the static chamber-gas chromatography approach. Statistical analyses incorporated one-way ANOVA for treatment effects, repeated measures ANOVA for temporal variations, and linear regression to identify environmental drivers.【Result】Thinning significantly modified soil properties: compare with CK, soil temperature increased by 2.73 ℃ in 5a plots (P < 0.05), while pH in 13 a plots increased 0.32 (P<0.05) and NH4+-N content in the 13 a plots decreased 2.86 mg/kg (P < 0.05). while other soil physicochemical properties before and after thinning had no significant changes. Recovery duration induced progressive changes: soil water content increased by 10.21%; soil temperature decreased by 3.08 ℃; and TP mass fraction increased by 0.21 g/kg. Seasonal CH4 flux dynamics showed peak absorption in July for all treatments. Thinning initially enhanced CH4 oxidation capacity (5 a vs CK, P < 0.05), which reverted to pre-treatment levels by 13 a (13 a vs CK, P>0.05). Regression analysis identified soil temperature and moisture as primary controls, which for every 1 ℃ increase in soil temperature, the soil CH4 uptake rate increased by 0.09-0.22 mg/(m2·d). Conversely, a 1% rise in soil moisture content reduced the CH4 uptake rate by 0.03-0.10 mg/(m2·d). Notably, stands with shorter post-thinning recovery duration (5 a) exhibited higher sensitivity to both moisture content and temperature variations. 【Conclusion】Thinning temporarily enhances soil CH4 oxidation capacity through microclimate modification, specifically via soil temperature increasing by 2.73 ℃ in early post-thinning stages (5 a). The positive effect of CH4 uptake diminishes with canopy recovery (13 a), suggesting rotational thinning interval below 13 years can could sustain soil CH4 sink functionality.

关键词

甲烷通量 / 森林抚育 / 松栎混交林 / 间伐 / 温室气体 / 土壤

Key words

methane flux / forest tending / mixed pine-oak forest / thinning / greenhouse gas / soil

引用本文

导出引用
王祥福, 盛启林, 李愿会, . 不同间伐恢复年限对秦岭松栎混交林土壤甲烷通量的影响[J]. 南京林业大学学报(自然科学版). 2026, 50(1): 142-149 https://doi.org/10.12302/j.issn.1000-2006.202407005
WANG Xiangfu, SHENG Qilin, LI Yuanghui, et al. Temporal effects of thinning on soil methane flux of pine-oak mixed forests in Qinling Mountains[J]. Journal of Nanjing Forestry University (Natural Sciences Edition). 2026, 50(1): 142-149 https://doi.org/10.12302/j.issn.1000-2006.202407005
中图分类号: S718.5   

参考文献

[1]
IPCC. Climate change 2021: the physical science basis-Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[M]. Cambridge, UK: Cambridge University Press, 2021.
[2]
韩雪, 陈宝明. 增温对土壤N2O和CH4排放的影响与微生物机制研究进展[J]. 应用生态学报, 2020, 31(11):3906-3914.
HAN X, CHEN B M. Progress in the effects of warming on soil N2O and CH4 emission and the underlying microbial mechanisms[J]. Chinese Journal of Applied Ecology, 2020, 31(11):3906-3914.DOI: 10.13287/j.1001-9332.202011.026.
[3]
崔莹莹, 何露露, 肖好燕, 等. 中亚热带人工幼林土壤甲烷通量月动态及影响因素[J]. 亚热带资源与环境学报, 2023, 18(2):41-49.
CUI Y Y, HE L L, XIAO H Y, et al. Monthly dynamics and influencing factors of soil methane flux in mid-subtropical young plantations[J]. Journal of Subtropical Resources and Environment, 2023, 18(2):41-49.DOI: 10.19687/j.cnki.1673-7105.2023.02.006.
[4]
王宇超, 陈逸飞, 林晨蕾, 等. 森林抚育间伐对杉木人工林温湿度的影响研究[J]. 森林工程, 2022, 38(1):9-14,26.
WANG Y C, CHEN Y F, LIN C L, et al. Effects of forest tending and thinning on temperature and humidity of Chinese fir plantation[J]. Forest Engineering, 2022, 38(1):9-14,26.DOI: 10.16270/j.cnki.slgc.2022.01.018.
[5]
刘效东, 周国逸, 陈修治, 等. 南亚热带森林演替过程中小气候的改变及对气候变化的响应[J]. 生态学报, 2014, 34(10):2755-2764.
LIU X D, ZHOU G Y, CHEN X Z, et al. Forest microclimate change along with the succession and response to climate change in south subtropical region[J]. Acta Ecologica Sinica, 2014, 34(10):2755-2764.DOI: 10.5846/stxb201307231934.
[6]
张康, 黄开栋, 赵小军, 等. 修枝对杨树人工林林内小气候及林下植被的短期效应[J]. 生态环境学报, 2019, 28(8):1548-1556.
ZHANG K, HUANG K D, ZHAO X J, et al. Effects of pruning on microclimate and understory vegetation in a poplar plantation[J]. Ecology and Environmental Sciences, 2019, 28(8):1548-1556.DOI: 10.16258/j.cnki.1674-5906.2019.08.007.
[7]
徐云蕾, 曾馥平, 宋同清, 等. 喀斯特峰丛洼地次生林小气候特征研究[J]. 农业现代化研究, 2012, 33(2):239-244.
XU Y L, ZENG F P, SONG T Q, et al. Study on microclimate characteristics of a secondary forest in depression between Karst hills[J]. Research of Agricultural Modernization, 2012, 33(2):239-244.
[8]
ZHOU Z H, WANG C K, JIN Y, et al. Impacts of thinning on soil carbon and nutrients and related extracellular enzymes in a larch plantation[J]. Forest Ecology and Management, 2019, 450:117523.DOI: 10.1016/j.foreco.2019.117523.
[9]
万忠梅, 宋长春. 土壤酶活性对生态环境的响应研究进展[J]. 土壤通报, 2009, 40(4):951-956.
WAN Z M, SONG C C. Advance on response of soil enzyme activity to ecological environment[J]. Chinese Journal of Soil Science, 2009, 40(4):951-956.DOI: 10.19336/j.cnki.trtb.2009.04.050.
[10]
马志良, 赵文强, 刘美, 等. 土壤呼吸组分对气候变暖的响应研究进展[J]. 应用生态学报, 2018, 29(10):3477-3486.
MA Z L, ZHAO W Q, LIU M, et al. Research progress on the responses of soil respiration components to climatic warming[J]. Chinese Journal of Applied Ecology, 2018, 29(10):3477-3486.DOI: 10.13287/j.1001-9332.201810.007.
[11]
YANG L, NIU S L, TIAN D S, et al. A global synthesis reveals increases in soil greenhouse gas emissions under forest thinning[J]. Science of The Total Environment, 2022, 804:150225.DOI: 10.1016/j.scitotenv.2021.150225.
[12]
HUTTUNEN J T, NYKÄNEN H, MARTIKAINEN P J, et al. Fluxes of nitrous oxide and methane from drained peatlands following forest clear-felling in southern Finland[J]. Plant and Soil, 2003, 255(2):457-462.DOI: 10.1023/A:1026035427891.
[13]
DOUKALIANOU F, RADOGLOU K, AGNELLI A E, et al. Annual greenhouse-gas emissions from forest soil of a peri-urban conifer forest in Greece under different thinning intensities and their climate-change mitigation potential[J]. Forest Science, 2019, 65(4):387-400.DOI: 10.1093/forsci/fxy069.
[14]
MING A G, YANG Y J, LIU S R, et al. Effects of near natural forest management on soil greenhouse gas flux in Pinus massoniana (Lamb.) and Cunninghamia lanceolata (Lamb.) hook.plantations[J]. Forests, 2018, 9(5):229.DOI: 10.3390/f9050229.
[15]
朱文见, 张慧, 王懿祥. 采伐对森林土壤呼吸影响的研究进展[J]. 浙江农林大学学报, 2021, 38(5):1000-1011.
ZHU W J, ZHANG H, WANG Y X. Research progress on effects of cutting on forest soil respiration[J]. Journal of Zhejiang A & F University, 2021, 38(5):1000-1011.DOI: 10.11833/j.issn.2095-0756.20210365.
[16]
TANG J W, QI Y, XU M, et al. Forest thinning and soil respiration in a ponderosa pine plantation in the Sierra Nevada[J]. Tree Physiology, 2005, 25(1):57-66.DOI: 10.1093/treephys/25.1.57.
[17]
KULMALA L, AALTONEN H, BERNINGER F, et al. Changes in biogeochemistry and carbon fluxes in a boreal forest after the clear-cutting and partial burning of slash[J]. Agricultural and Forest Meteorology, 2014, 188:33-44.DOI: 10.1016/j.agrformet.2013.12.003.
[18]
CHENG X Q, HAN H R, KANG F F, et al. Short-term effects of thinning on soil respiration in a pine (Pinus tabulaeformis) plantation[J]. Biology and Fertility of Soils, 2014, 50(2):357-367.DOI: 10.1007/s00374-013-0852-0.
[19]
MCVICAR K, KELLMAN L. Growing season nitrous oxide fluxes across a 125+ year harvested red spruce forest chronosequence[J]. Biogeochemistry, 2014, 120(1):225-238.DOI: 10.1007/s10533-014-9992-z.
[20]
XU H W, GAN Q, HUANG L L, et al. Effects of forest thinning on soil microbial biomass and enzyme activity[J]. Catena, 2024, 239:107938.DOI: 10.1016/j.catena.2024.107938.
[21]
ZHANG X Z, GUAN D X, LI W B, et al. The effects of forest thinning on soil carbon stocks and dynamics:a meta-analysis[J]. Forest Ecology and Management, 2018, 429:36-43.DOI: 10.1016/j.foreco.2018.06.027.
[22]
KELLER M, VARNER R, DIAS J D, et al. Soil-atmosphere exchange of nitrous oxide,nitric oxide,methane,and carbon dioxide in logged and undisturbed forest in the Tapajos National Forest,Brazil[J]. Earth Interactions, 2005, 9(23):1-28.DOI: 10.1175/ei125.1.
[23]
YASHIRO Y, KADIR W R, OKUDA T, et al. The effects of logging on soil greenhouse gas (CO2,CH4,N2O) flux in a tropical rain forest,Peninsular Malaysia[J]. Agricultural and Forest Meteorology, 2008, 148(5):799-806.DOI: 10.1016/j.agrformet.2008.01.010.
[24]
FU Z H, YAN Z F, LI S L. Effects of soil pore structure on gas diffusivity under different land uses:characterization and modelling[J]. Soil and Tillage Research, 2024, 237:105988.DOI: 10.1016/j.still.2023.105988.
[25]
曹立, 王维枫, 马雪红, 等. 间伐对秦岭松栎混交林土壤异养呼吸的影响[J]. 浙江农林大学学报, 2024, 41(1):22-29.
CAO L, WANG W F, MA X H, et al. Effects of thinning on soil heterotrophic respiration of oak-pine mixed forests in Qinling Mountains[J]. Journal of Zhejiang A & F University, 2024, 41(1):22-29.DOI: 10.11833/j.issn.2095-0756.20230193.
[26]
MIN X Y, XU D Y, HU X, et al. Changes in total organic carbon and organic carbon fractions of reclaimed minesoils in response to the filling of different substrates[J]. Journal of Environmental Management, 2022, 312:114928.DOI: 10.1016/j.jenvman.2022.114928.
[27]
朱牛, 孙建, 石凝, 等. 短期围栏封育对高寒草甸植物群落及土壤理化性质的影响[J]. 草地学报, 2023, 31(3):834-843.
ZHU N, SUN J, SHI N, et al. Effects of short-term fence enclosing on plant community and the physical and chemical properties of alpine meadow soils[J]. Acta Agrestia Sinica, 2023, 31(3):834-843. DOI: 10.11733/j.issn.1007-0435.2023.03.025.
[28]
阮泽斌, 王兰鸽, 蓝王凯宁, 等. 氮肥减量配施生物炭对水稻氮素吸收和土壤理化性质的影响[J]. 浙江农业学报, 2023, 35(2):394-402.
RUAN Z B, WANG L G, LAN W K N, et al. Effects of nitrogen reduction and biochar on nitrogen uptake by rice and soil physiochemical properties[J]. Acta Agriculturae Zhejiangensis, 2023, 35(2):394-402.DOI: 10.3969/j.issn.1004-1524.2023.02.17.
[29]
ZHAO C H, SU N E, WANG H, et al. Effects of thinning on soil nutrient availability and fungal community composition in a plantation medium-aged pure forest of Picea koraiensis[J]. Scientific Reports, 2023, 13:2492.DOI: 10.1038/s41598-023-29498-9.
[30]
MOSIER A R, MORGAN J A, KING J Y, et al. Soil-atmosphere exchange of CH4,CO2,NOx,and N2O in the Colorado shortgrass steppe under elevated CO2[J]. Plant and Soil, 2002, 240(2):201-211.DOI: 10.1023/A:1015783801324.
[31]
ZHOU X Q, SMAILL S J, GU X Y, et al. Manipulation of soil methane oxidation under drought stress[J]. Science of The Total Environment, 2021, 757:144089.DOI: 10.1016/j.scitotenv.2020.144089.
[32]
CHEN Q, LONG C Y, CHEN J W, et al. Differential response of soil CO2,CH4,and N2 O emissions to edaphic properties and microbial attributes following afforestation in central China[J]. Global Change Biology, 2021, 27(21):5657-5669.DOI: 10.1111/gcb.15826.
[33]
SAKABE A, KOSUGI Y, TAKAHASHI K, et al. One year of continuous measurements of soil CH4 and CO2 fluxes in a Japanese cypress forest:temporal and spatial variations associated with Asian monsoon rainfall[J]. Journal of Geophysical Research:Biogeosciences, 2015, 120(4):585-599.DOI: 10.1002/2014JG002851.
[34]
BRADFORD M A, INESON P, WOOKEY P A, et al. Soil CH4 oxidation:response to forest clearcutting and thinning[J]. Soil Biology and Biochemistry, 2000, 32(7):1035-1038.DOI: 10.1016/S0038-0717(00)00007-9.
[35]
刘小飞, 杨智杰, 谢锦升, 等. 环境变化对森林土壤CH4氧化的影响[J]. 亚热带资源与环境学报, 2010, 5(4):78-84.
LIU X F, YANG Z J, XIE J S, et al. Effects of environmental change on the oxidation of methane in forest soils[J]. Journal of Subtropical Resources and Environment, 2010, 5(4):78-84.DOI: 10.19687/j.cnki.1673-7105.2010.04.012.
[36]
BROOKS R T, KYKER-SNOWMAN T D. Forest floor temperature and relative humidity following timber harvesting in southern New England,USA[J]. Forest Ecology and Management, 2008, 254(1):65-73.DOI: 10.1016/j.foreco.2007.07.028.
[37]
SIMONIN K, KOLB T E, MONTES-HELU M, et al. The influence of thinning on components of stand water balance in a ponderosa pine forest stand during and after extreme drought[J]. Agricultural and Forest Meteorology, 2007, 143(3/4):266-276.DOI: 10.1016/j.agrformet.2007.01.003.
[38]
MANDER Ü, KRASNOVA A, SCHINDLER T, et al. Long-term dynamics of soil,tree stem and ecosystem methane fluxes in a riparian forest[J]. Science of The Total Environment, 2022, 809:151723.DOI: 10.1016/j.scitotenv.2021.151723.
[39]
SAVI F, DI BENE C, CANFORA L, et al. Environmental and biological controls on CH4 exchange over an evergreen Mediterranean forest[J]. Agricultural and Forest Meteorology, 2016, 226:67-79.DOI: 10.1016/j.agrformet.2016.05.014.
[40]
LIU L, ESTIARTE M, PEÑUELAS J. Soil moisture as the key factor of atmospheric CH4 uptake in forest soils under environmental change[J]. Geoderma, 2019, 355:113920.DOI: 10.1016/j.geoderma.2019.113920.
[41]
WU X, YAO Z, BRÜGGEMANN N, et al. Effects of soil moisture and temperature on CO2 and CH4 soil-atmosphere exchange of various land use/cover types in a semi-arid grassland in Inner Mongolia,China[J]. Soil Biology and Biochemistry, 2010, 42(5):773-787.DOI: 10.1016/j.soilbio.2010.01.013.
[42]
GATICA G, FERNÁNDEZ M E, JULIARENA M P, et al. Environmental and anthropogenic drivers of soil methane fluxes in forests:global patterns and among-biomes differences[J]. Global Change Biology, 2020, 26(11):6604-6615.DOI: 10.1111/gcb.15331.
[43]
NAZARIES L, KARUNARATNE S B, DELGADO-BAQUERIZO M, et al. Environmental drivers of the geographical distribution of methanotrophs:insights from a national survey[J]. Soil Biology and Biochemistry, 2018, 127:264-279.DOI: 10.1016/j.soilbio.2018.08.014.
[44]
ARONSON E L, ALLISON S D, HELLIKER B R. Environmental impacts on the diversity of methane-cycling microbes and their resultant function[J]. Frontiers in Microbiology, 2013, 4:225.DOI: 10.3389/fmicb.2013.00225.
[45]
DOU X L, ZHOU W, ZHANG Q F, et al. Greenhouse gas (CO2,CH4,N2O) emissions from soils following afforestation in central China[J]. Atmospheric Environment, 2016, 126:98-106.DOI: 10.1016/j.atmosenv.2015.11.054.
[46]
WERNER C, KIESE R, BUTTERBACH-BAHL K. Soil-atmosphere exchange of N2O,CH4,and CO2 and controlling environmental factors for tropical rain forest sites in western Kenya[J]. Journal of Geophysical Research:Atmospheres, 2007, 112(D3):D03308.DOI: 10.1029/2006JD007388.

基金

国家自然科学基金项目(32071763)
国家林业和草原局西北调查规划院2021年科技创新项目(XBY-KJCX-2021-15)

责任编辑: 孟苗婧
PDF(1737 KB)

Accesses

Citation

Detail

段落导航
相关文章

/