基于慢特征分析与生成对抗网络的林业光学遥感影像薄云去除方法

朱嵩宇, 李超, 景维鹏

南京林业大学学报(自然科学版) ›› 2026, Vol. 50 ›› Issue (1) : 223-230.

PDF(99855 KB)
PDF(99855 KB)
南京林业大学学报(自然科学版) ›› 2026, Vol. 50 ›› Issue (1) : 223-230. DOI: 10.12302/j.issn.1000-2006.202407020
研究论文

基于慢特征分析与生成对抗网络的林业光学遥感影像薄云去除方法

作者信息 +

Thin cloud removal method for forestry optical remote sensing images based on slow feature analysis and generative adversarial network

Author information +
文章历史 +

摘要

【目的】 针对光学遥感影像薄云去除后易出现影像失真、可用性降低的问题,提出一种融合慢特征分析(SFA)与生成对抗网络(GANs)的薄云去除方法(SFGAN),以提升影像质量,为林业遥感数据分析提供可靠支持。【方法】首先,设计慢变特征模块,通过计算初始影像的云反射率及高维特征慢变化度,将慢变特征向量与随机初始向量融合作为生成网络输入,增强生成器对云层特征的辨识能力;其次,利用云反射率作为鉴别器约束因子,通过对抗博弈迭代优化生成高质量无云影像,提升网络对云层与地物的区分能力。【结果】在公开数据集RICE1和PRSC上的试验表明:SFGAN模型在RICE1数据集上表现较为出色,无云影像的峰值信噪比(PSNR值)为33.740 7,结构相似性(SSIM值)为0.958 2;在PRSC数据集上,PSNR值为24.341 3,SSIM值为0.879 2,即本方法的性能量化指标及视觉质量均优于其他方法。基于Landsat 8影像的泛化实验进一步验证,SFGAN在真实云与模拟云场景中均能有效恢复地物细节,且处理单幅影像仅需0.98 s。【结论】SFGAN通过融合慢特征分析与生成对抗网络,能显著降低薄云对林业光学遥感影像的干扰,从数据源头提升影像可用性与分析准确性。

Abstract

To address the issue of image distortion and reduced usability caused by thin cloud removal in optical remote sensing images, this study proposes a novel thin cloud removal method: SFGAN, that integrates slow feature analysis (SFA) with generative adversarial networks (GANs), aiming to enhance image quality and provide reliable data support for forestry remote sensing analysis.【Method】First, a slow-varying feature module is designed to calculate cloud reflectance and high-dimensional feature slowness. The slow-varying feature vectors are concatenated with random initial vectors as the generator input, improving cloud feature recognition. Second, cloud reflectance is utilized as a discriminative constraint factor to iteratively optimize the discriminator, thereby generating high-quality cloud-free images through adversarial training.【Result】Experiments on public datasets RICE1 and PRSC demonstrate that the SFGAN outperforms existing methods in both quantitative metrics (e.g., PSNR=33.740 7 and SSIM=0.958 2 on RICE1,PSNR=24.341 3 and SSIM=0.879 2 on PRSC) and visual assessments. Validation using Landsat 8 imagery shows SFGAN achieves superior cloud removal effects in both real and simulated cloud scenarios, with a processing time of 0.98 seconds per image.【Conclusion】The SFGAN framework effectively mitigates thin cloud interference in forestry optical remote sensing images by synergizing SFA and GANs, significantly improving data usability and analytical accuracy at the source level.

关键词

林业光学遥感影像 / 薄云去除 / 慢特征分析(SFA) / 生成对抗网络(GANs)

Key words

forestry optical remote sensing images / thin cloud removal / slow feature analysis (SFA) / generative adversarial networks (GANs)

引用本文

导出引用
朱嵩宇, 李超, 景维鹏. 基于慢特征分析与生成对抗网络的林业光学遥感影像薄云去除方法[J]. 南京林业大学学报(自然科学版). 2026, 50(1): 223-230 https://doi.org/10.12302/j.issn.1000-2006.202407020
ZHU Songyu, LI Chao, JING Weipeng. Thin cloud removal method for forestry optical remote sensing images based on slow feature analysis and generative adversarial network[J]. Journal of Nanjing Forestry University (Natural Sciences Edition). 2026, 50(1): 223-230 https://doi.org/10.12302/j.issn.1000-2006.202407020
中图分类号: S757   

参考文献

[1]
李增元, 陈尔学. 中国林业遥感发展历程[J]. 遥感学报, 2021, 25(1):292-301.
LI Z Y, CHEN E X. Development course of forestry remote sensing in China[J]. Journal of Remote Sensing, 2021, 25(1):292-301.DOI: 10.3969/j.issn.1674-9030.2018.11.015.
[2]
CAI H K, YANG Y, CHEN Q L. Distribution characteristics of cloud types and cloud phases over China and their relationship with cloud temperature[J]. Remote Sensing, 2022, 14(21):5601.DOI: 10.3390/rs14215601.
[3]
徐萌, 王思涵, 郭仁忠, 等. 遥感影像云检测和云去除方法综述[J]. 计算机研究与发展, 2024, 61(6):1585-1607.
XU M, WANG S H, GUO R Z, et al. Review of cloud detection and cloud removal methods for remote sensing images[J]. Journal of Computer Research and Development, 2024, 61(6):1585-1607.DOI: 10.7544/issn1000-1239.202330145.
[4]
郭庭威, 黄红莲, 孙晓兵, 等. 环境二号卫星多光谱图像的薄云检测及去除[J]. 大气与环境光学学报, 2023, 18(4):383-400.
GUO T W, HUANG H L, SUN X B, et al. Detection and removal of thin clouds in multispectral images of HJ-2A/B satellites[J]. Journal of Atmospheric and Environmental Optics, 2023, 18(4):383-400.DOI: 10.3969/j.issn.1673-6141.2023.04.008.
[5]
LI X, XU F, LI L Y, et al. AAFormer:attention-attended transformer for semantic segmentation of remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21:5002805.DOI: 10.1109/LGRS.2024.3397851.
[6]
LIANG K W, YANG G, ZUO Y Y, et al. A novel method for cloud and cloud shadow detection based on the maximum and minimum values of sentinel-2 time series images[J]. Remote Sensing, 2024, 16(8):1392.DOI: 10.3390/rs16081392.
[7]
ZHOU Y, JING W P, WANG J, et al. MSAR-DefogNet:lightweight cloud removal network for high resolution remote sensing images based on multi scale convolution[J]. IET Image Processing, 2022, 16(3):659-668.DOI: 10.1049/ipr2.12224.
[8]
LI W B, LI Y, CHEN D, et al. Thin cloud removal with residual symmetrical concatenation network[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 153:137-150.DOI: 10.1016/j.isprsjprs.2019.05.003.
[9]
WEN X, PAN Z X, HU Y X, et al. An effective network integrating residual learning and channel attention mechanism for thin cloud removal[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:6507605.DOI: 10.1109/LGRS.2022.3161062.
[10]
ZHENG J H, LIU X Y, WANG X D. Single image cloud removal using U-Net and generative adversarial networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(8):6371-6385.DOI: 10.1109/TGRS.2020.3027819.
[11]
XIAO Y C, ZHU F, ZHUANG S X, et al. Blind source separation and deep feature learning network-based identification of multiple electromagnetic radiation sources[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72:2508813.DOI: 10.1109/TIM.2023.3259020.
[12]
SONG P Y, ZHAO C H. Slow down to go better:a survey on slow feature analysis[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(3):3416-3436.DOI: 10.1109/TNNLS.2022.3201621.
[13]
LIN H Y, LIU Y, LI S, et al. How generative adversarial networks promote the development of intelligent transportation systems:a survey[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(9):1781-1796.
[14]
SENAPATI R K, SATVIKA R, ANMANDLA A, et al. Image-to-image translation using Pix2Pix GAN and cycle GAN[M]// Data Intelligence and Cognitive Informatics. Singapore: Springer Nature, 2024:573-586.DOI: 10.1007/978-981-99-7962-2_42.
[15]
LIN D Y, XU G L, WANG X K, et al. A remote sensing image dataset for cloud removal[EB/OL].[2024-07-13]( 2019-01-03). 2019. https://arXiv.org/abs/1901.00600v1.
[16]
郑其光, 王仁芳, 邱虹, 等. 基于注意力机制和生成对抗网络的遥感影像云去除[J]. 遥感学报, 2025, 29(3):752-761.
ZHENG Q G, WANG R F, QIU H, et al. Remote sensing image cloud removal network on the basis of the attention mechanism and generative adversarial network[J]. National Remote Sensing Bulletin, 2025, 29(3):752-761.
[17]
蔡志丹, 方明, 李喆, 等. 基于高斯曲率和加权图总变分正则化的遥感图像盲去模糊算法[J]. 吉林大学学报(工学版), 2023, 53(9):2649-2658.
CAI Z D, FANG M, LI Z, et al. Blind remote sensing image deblurring algorithm based on Gaussian curvature and reweighted graph total variation[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(9):2649-2658.DOI: 10.13229/j.cnki.jdxbgxb.20230140.
[18]
刘万军, 程裕茜, 曲海成. 基于生成对抗网络的图像自增强去雾算法[J]. 系统仿真学报, 2024, 36(5):1093-1106.
LIU W J, CHENG Y Q, QU H C. Image self-enhancement de-hazing algorithm combined with generative adversarial network[J]. Journal of System Simulation, 2024, 36(5):1093-1106.DOI: 10.16182/j.issn1004731x.joss.22-1551.
[19]
马得草, 鲜勇, 苏娟, 等. 基于改进的条件生成对抗网络的可见光红外图像转换算法[J]. 光子学报, 2023, 52(4):0410003.
MA D C, XIAN Y, SU J, et al. Visible-to-infrared image translation based on an improved conditional generative adversarial nets[J]. Acta Photonica Sinica, 2023, 52(4):0410003.DOI: 10.3788/gzxb20235204.0410003.
[20]
DING H D, XIE F Y, ZI Y, et al. Feedback network for compact thin cloud removal[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20:6003505.DOI: 10.1109/LGRS.2023.3256416.
[21]
BASKAR D, PARAMBALATH N K, KRISHNANUNNI S O. Variational mode decomposition-enhanced thin cloud removal using UNet vision transformer cycle-consistent generative adversarial network[J]. Journal of Applied Remote Sensing, 2024, 18(2):026504-026504.DOI: 10.1117/1.jrs.18.026504.
[22]
ZI Y, DING H D, XIE F Y, et al. Wavelet integrated convolutional neural network for thin cloud removal in remote sensing images[J]. Remote Sensing, 2023, 15(3):781.DOI: 10.3390/rs15030781.
[23]
向俊, 严恩萍, 姜镓伟, 等. 基于全卷积神经网络和低分辨率标签的森林变化检测研究[J]. 南京林业大学学报(自然科学版), 2024, 48 (1) :187-195.
XIANG J, YAN E P, JIANG J W, et al. Research on forest change detection based on fully convolutional network and low resolution label[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2024, 48 (1):187-195. DOI: 10.12302/j.issn.1000-2006.202204069.
[24]
杨帆, 赵增鹏, 张磊. 基于高斯混合模型的遥感影像云检测技术[J]. 南京林业大学学报(自然科学版), 2018, 42(4):134-140.
YANG F, ZHAO Z P, ZHANG L. Cloud detection technology based on Gaussian mixture model for high-resolution remote sensing imagery[J]. Journal of Nanjing Forestry University Natural Sciences Edition, 2018, 42(4):134-140. DOI: 10.3969/j.issn.1000-2006.201708009.
[25]
牛弘健, 刘文萍, 陈日强, 等. 基于Resnet的林地无人机图像去雾改进算法[J]. 南京林业大学学报(自然科学版). 2024, 48(2): 175-181.
NIU H J, LIU W P, CHEN R Q, et al. Dehaze algorithm for woodland UAV images based on Resnet[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2024, 48(2): 175-181. DOI: 10.12302/j.issn.1000-2006.202203011.

基金

黑龙江省杰出青年基金项目(JQ2023F002)
中央高校基础研究基金项目(2572023CT16)

责任编辑: 郑琰燚
PDF(99855 KB)

Accesses

Citation

Detail

段落导航
相关文章

/