不同密度和水分管理下毛白杨人工林细根分布特征

周欧, 古丽米热·依力哈木, 祝维, 王亚飞, 贾黎明, 席本野

南京林业大学学报(自然科学版) ›› 2026, Vol. 50 ›› Issue (1) : 179-187.

PDF(2153 KB)
PDF(2153 KB)
南京林业大学学报(自然科学版) ›› 2026, Vol. 50 ›› Issue (1) : 179-187. DOI: 10.12302/j.issn.1000-2006.202407037
研究论文

不同密度和水分管理下毛白杨人工林细根分布特征

作者信息 +

Characteristics of fine root distribution in Populus tomentosa plantations under density and water management

Author information +
文章历史 +

摘要

【目的】 探讨不同密度和水分管理下毛白杨(Populus tomentosa)林分细根分布特征,为优化华北平原杨树人工林的培育技术提供参考。【方法】于2021年,采用根钻法分别测定不同密度(以株行距表示,高密度3 m×3 m,中密度3 m×6 m,低密度6 m×6 m)和不同水分管理(FI,滴灌充分灌溉;NI,雨养)下的5种(FI、FI、NI、NI和NI)毛白杨林分6 m剖面内的细根(直径<2 mm)生长及形态指标和土壤含水率,分析不同密度和水分管理下毛白杨细根分布特征。【结果】①高密度林分不同距树干距离细根分布较为均匀,而中密度和低密度林分细根随距树干距离的增加而减少。各处理毛白杨林木细根生长随土层深度增加而减少,且细根生物量密度(RBD)峰值出现在(0,20] cm土层内,范围为108.15~450.74 g/m3。②造林密度降低使林木细根趋于浅层化分布;而FI使得林木细根分布深度降低,其中,RBD累计比例达到50%所对应的土层深度最浅的处理为FI,仅26.49 cm。③NI条件下,NI[0,600] cm剖面平均RBD最低(58.16 g/m3),但增加了(100,400] cm土层细根生长分布;NI增加了林木细根分布深度,加速了林分深层土壤水分的利用和消耗。相较于NI处理,FI处理减少了林木在30 cm以下土层中的细根生长分布。④NI条件下,密度对各土层细根形态特征均无显著影响。高密度林分中,FI处理在(30,600] cm土层通过高比根长(24.45~90.97 m/g)、低组织密度(0.24~0.39 g/cm3)和小细根平均直径(0.20~0.32 mm)的高效细根形态结构来促进林木生长。【结论】毛白杨细根生长在[0,600] cm垂直分布,在5种处理中呈现出随土层加深整体减少的趋势。降低造林密度会使林木细根聚集在浅层,且减少深土层细根生物量的占比。NI条件下,高密度林分通过增加(100,400] cm的RBD来提高细根表面积(RSA)和细根根长密度(RLD),进而缓解由于林分密度过高引起的地下资源及空间的竞争;受株树密度和林木单株生长的影响,中密度林分增加了林木细根分布深度,加速了林分深层土壤水分的利用和消耗。FI处理下,高密度林分通过改善[0,600] cm剖面内林分细根的可塑性特征而不是细根生长来提升林木水分利用效率,以促进林木生长。

Abstract

【Objective】 This study investigated the distribution characteristics of fine roots in poplar (Populus tomentosa) plantations under different stand densities and water management regimes, aiming to optimize cultivation techniques for poplar plantations in the north China Plain.【Method】In 2021, we employed the soil core method to analyze fine root (< 2 mm in diameter) growth, morphological indices, and soil water content with the 6 m soil profile across five treatment combinations: FIhigh (high density + full drip irrigation), FIlow (low density + full drip irrigation), NIhigh (high density + rainfed), NIlow (low density + rainfed), and NImedium (medium density + rainfed). Stand densities were categorized as high (3 m×3 m), medium (3 m×6 m) and low (6 m×6 m). The study assessed how density and irrigation (FI. full drip irrigation; NI. rainfed) influence fine root biomass distribution, vertical stratification, and horizontal extension.【Result】①In high-density stands, fine roots were uniformly distributed at varying distances from the tree base, whereas in medium-and low-density stands, fine root biomass decreased with increasing distance from the tree. ②Across all treatments, fine root biomass declined with soil depth, with the peak distribution of P. tomentosa fine roots occurring in the [0,200] cm layer (108.15-450.74 g/m3).③Reduced planting density led to shallower fine root distribution. Under FI, fine roots were concentrated in upper soil layers, with the shallowest cumulative 50% fine root biomass density (RBD) observed in the low FI treatment (26.49 cm). ④Under NI conditions, NIhigh exhibited the lowest mean RBD (58.16 g/m3) in the [0,600] cm profile but increased fine root growth in the (100,400] cm layer. NImedium enhanced deep root distribution and accelerated soil water depletion in deeper layers. Compared to NI, FI reduced RBD below 30 cm. ⑤Under NI, density had no significant effect on fine root morphology. However, in high-density stands, FIhigh promoted stand growth in the (30,600] cm layer via efficient root traits: high specific root length (24.45-90.97 m/g), low tissue density (0.24-0.39 g/cm3), and small mean diameter (0.20-0.32 mm). 【Conclusion】 Fine roots of P. tomentosa exhibit a vertical distribution within [0,600] cm, decreasing with depth across all treatments. Reducing planting density shifts fine roots upward, decreasing deep-layer biomass. Under NI, high-density stands enhance root boundary density (RBD) in the (100,400] cm range, improving fine root surface area (RSA) and length density (RLD), mitigating underground competition. Medium-density stands under NI promote deep root growth, accelerating deep soil water use. Under FI, high-density stands optimize root plasticity rather than biomass expansion to improve water-use efficiency and growth. These findings support climate-resilient poplar plantation strategies that balance productivity and sustainability in semi-arid regions.

关键词

毛白杨人工林 / 造林密度 / 滴灌充分灌溉 / 细根分布

Key words

Populus tomentosa plantation / planting densities / drip irrigation with full irrigation / fine roots distribution

引用本文

导出引用
周欧, 古丽米热·依力哈木, 祝维, . 不同密度和水分管理下毛白杨人工林细根分布特征[J]. 南京林业大学学报(自然科学版). 2026, 50(1): 179-187 https://doi.org/10.12302/j.issn.1000-2006.202407037
ZHOU Ou, Gulimire Yilihamu, ZHU Wei, et al. Characteristics of fine root distribution in Populus tomentosa plantations under density and water management[J]. Journal of Nanjing Forestry University (Natural Sciences Edition). 2026, 50(1): 179-187 https://doi.org/10.12302/j.issn.1000-2006.202407037
中图分类号: S725.5   

参考文献

[1]
FRESCHET G T, ROUMET C, COMAS L H, et al. Root traits as drivers of plant and ecosystem functioning:current understanding,pitfalls and future research needs[J]. New Phytologist, 2021, 232(3):1123-1158.DOI: 10.1111/nph.17072.
[2]
RYAN P R, DELHAIZE E, WATT M, et al. Plant roots:understanding structure and function in an ocean of complexity[J]. Annals of Botany, 2016, 118(4):555-559.DOI: 10.1093/aob/mcw192.
[3]
MCCORMACK M L, GUO D L, IVERSEN C M, et al. Building a better foundation:improving root-trait measurements to understand and model plant and ecosystem processes[J]. New Phytologist, 2017, 215(1):27-37.DOI: 10.1111/nph.14459.
[4]
DA SILVA E V, BOUILLET J P, et al.DE MORAES GONÇALVES J L, Functional specialization of Eucalyptus fine roots:contrasting potential uptake rates for nitrogen,potassium and calcium tracers at varying soil depths[J]. Functional Ecology, 2011, 25(5):996-1006.DOI: 10.1111/j.1365-2435.2011.01867.x.
[5]
NEPSTAD D C, et al.DE CARVALHO C R,DAVIDSON E A, The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures[J]. Nature, 1994, 372(6507):666-669.DOI: 10.1038/372666a0.
[6]
PURI S, SINGH V, BHUSHAN B, et al. Biomass production and distribution of roots in three stands of Populus deltoides[J]. Forest Ecology and Management, 1994, 65(2/3):135-147.DOI: 10.1016/0378-1127(94)90165-1.
[7]
COLEMAN M. Spatial and temporal patterns of root distribution in developing stands of four woody crop species grown with drip irrigation and fertilization[J]. Plant and Soil, 2007, 299(1):195-213.DOI: 10.1007/s11104-007-9375-5.
[8]
王琪, 于水强, 王维枫, 等. 不同密度和植株配置形状的杨树人工林细根生物量特征研究[J]. 南京林业大学学报(自然科学版), 2020, 44(1):179-185.
WANG Q, YU S Q, WANG W F, et al. Characteristics of fine-root biomass in poplar plantations with different planting densities and spacing configurations[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(1):179-185.DOI: 10.3969/j.issn.1000-2006.201809019.
[9]
田宇明, 王庆成. 初植密度对10年生水曲柳人工林生物量及根系的影响[J]. 林业科学, 2011, 47(7):102-107.
TIAN Y M, WANG Q C. Influence of planting density on biomass accumulation and root growth of manchurian ash (Fraxinus mandshurica) in 10-year-old plantation stands[J].Scientia Silvae Sinicae, 2011, 47(7):102-107.
[10]
FAROOQ T H, WU W J, TIGABU M, et al. Growth,biomass production and root development of Chinese fir in relation to initial planting density[J]. Forests, 2019, 10(3):236.DOI: 10.3390/f10030236.
[11]
ATKINSON D. Preliminary observations of the effect of spacing on the apple root system[J]. Scientia Horticulturae, 1976, 4(3):285-290.DOI: 10.1016/0304-4238(76)90052-2.
[12]
HE Y L, LI G D, XI B Y, et al. Fine root plasticity of young Populus tomentosa plantations under drip irrigation and nitrogen fertigation in the North China Plain[J]. Agricultural Water Management, 2022, 261:107341.DOI: 10.1016/j.agwat.2021.107341.
[13]
DICKMANN D I, NGUYEN P V, PREGITZER K S. Effects of irrigation and coppicing on above-ground growth,physiology,and fine-root dynamics of two field-grown hybrid poplar clones[J]. Forest Ecology and Management, 1996, 80(1/2/3):163-174.DOI: 10.1016/0378-1127(95)03611-3.
[14]
邹松言, 李豆豆, 汪金松, 等. 毛白杨幼林细根对梯度土壤水分的响应[J]. 林业科学, 2019, 55(10):124-137.
ZOU S Y, LI D D, WANG J S, et al. Response of fine roots to soil moisture of different gradients in young Populus tomentosa plantation[J]. Scientia Silvae Sinicae, 2019, 55(10):124-137.DOI: 10.11707/j.1001-7488.20191013.
[15]
ZOU S Y, LI D D, DI N, et al. Stand development modifies effects of soil water availability on poplar fine-root traits:evidence from a six-year experiment[J]. Plant and Soil, 2022, 480(1):165-184.DOI: 10.1007/s11104-022-05568-1.
[16]
席本野. 杨树根系形态、分布、动态特征及其吸水特性[J]. 北京林业大学学报, 2019, 41(12):37-49.
XI B Y. Morphology,distribution,dynamic characteristics of poplar roots and its water uptake habits[J]. Journal of Beijing Forestry University, 2019, 41(12):37-49.DOI: 10.12171/j.1000-1522.20190400.
[17]
贺曰林. 毛白杨S86人工林根区滴灌施肥及水氮调控机制研究[D]. 北京: 北京林业大学, 2021.DOI: 10.26949/d.cnki.gblyu.2021.000338.
HE Y L. Research on the drip irrigation-nitrogen fertigation and mechanism of water-nitrogen regulation in root zone for Populus tomentosa S86 plantation[D]. Beijing: Beijing Forestry University, 2021.DOI: 10.26949/d.cnki.gblyu.2021.000338.
[18]
祝维, 周欧, 孙一鸣, 等. 混交林内毛白杨和刺槐根系吸水的动态生态位划分[J]. 植物生态学报, 2023, 47(3):389-403.
ZHU W, ZHOU O, SUN Y M, et al. Dynamic niche partitioning in root water uptake of Populus tomentosa and Robinia pseudoacacia in mixed forest[J]. Chinese Journal of Plant Ecology, 2023, 47(3):389-403.DOI: 10.17521/cjpe.2022.0197.
[19]
PIERRET A, MAEGHT J L, CLÉMENT C, et al. Understanding deep roots and their functions in ecosystems:an advocacy for more unconventional research[J]. Annals of Botany, 2016, 118(4):621-635.DOI: 10.1093/aob/mcw130.
[20]
MAEGHT J L, REWALD B, PIERRET A. How to study deep roots-and why it matters[J]. Frontiers in Plant Science, 2013, 4:299.DOI: 10.3389/fpls.2013.00299.
[21]
席本野, 邸楠, 曹治国, 等. 树木吸收利用深层土壤水的特征与机制:对人工林培育的启示[J]. 植物生态学报, 2018, 42(9):885-905.
XI B Y, DI N, CAO Z G, et al. Characteristics and underlying mechanisms of plant deep soil water uptake and utilization:implication for the cultivation of plantation trees[J]. Chinese Journal of Plant Ecology, 2018, 42(9):885-905. DOI:10.17521/cjpe.2018.0083.
[22]
HIBBS D, WITHROW-ROBINSON B, BROWN D, et al. Hybrid poplar in the Willamette valley[J]. Western Journal of Applied Forestry, 2003, 18(4):281-285.DOI: 10.1093/wjaf/18.4.281.
[23]
燕辉, 苏印泉, 朱昱燕, 等. 秦岭北坡杨树人工林细根分布与土壤特性的关系[J]. 南京林业大学学报(自然科学版), 2009, 33(2):85-89.
YAN H, SU Y Q, ZHU Y Y, et al. Distribution characters of fine root of Populus plantation and its relation to properties of soil in the northern slope of Qinling Mountains[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2009, 33(2):85-89.DOI: 10.3969/j.issn.1000-2006.2009.02.021.
[24]
WEEMSTRA M, STERCK F J, VISSER E J W, et al. Fine-root trait plasticity of beech (Fagus sylvatica) and spruce (Picea abies) forests on two contrasting soils[J]. Plant and Soil, 2017, 415(1):175-188.DOI: 10.1007/s11104-016-3148-y.
[25]
MA L H, WU P T, WANG Y K. Spatial distribution of roots in a dense jujube plantation in the semiarid hilly region of the Chinese Loess Plateau[J]. Plant and Soil, 2012, 354(1):57-68.DOI: 10.1007/s11104-011-1041-2.
[26]
FRYMARK-SZYMKOWIAK A, KIELISZEWSKA-ROKICKA B. The fine root distribution and morphology of mature white poplar in natural temperate riverside forests under periodically flooded or dry hydrological conditions[J]. Forests, 2023, 14(2):223.DOI: 10.3390/f14020223.
[27]
EISSENSTAT D M. Costs and benefits of constructing roots of small diameter[J]. Journal of Plant Nutrition, 1992, 15(6/7):763-782.DOI: 10.1080/01904169209364361.
[28]
ZHU W, WU X C, JIA L M, et al. Effects of key forest management practices and climatic factors on the growth of Populus tomentosa plantations in the North China Plain[J]. Forest Ecology and Management, 2022, 521:120444.DOI: 10.1016/j.foreco.2022.120444.
[29]
BARGUÉS TOBELLA A, HASSELQUIST N J, BAZIÉ H R, et al. Strategies trees use to overcome seasonal water limitation in an agroforestry system in semiarid west Africa[J]. Ecohydrology, 2017, 10(3):e1808.DOI: 10.1002/eco.1808.
[30]
DHIMAN I, BILHEUX H, DECARLO K, et al. Quantifying root water extraction after drought recovery using sub-mm in situ empirical data[J]. Plant and Soil, 2018, 424(1):73-89.DOI: 10.1007/s11104-017-3408-5.
[31]
NAN W G, TA F, MENG X Q, et al. Effects of age and density of Pinus sylvestris var.mongolica on soil moisture in the semiarid Mu Us Dunefield,northern China[J]. Forest Ecology and Management, 2020, 473:118313.DOI: 10.1016/j.foreco.2020.118313.
[32]
UHL E, BIBER P, ULBRICHT M, et al. Analysing the effect of stand density and site conditions on structure and growth of oak species using Nelder trials along an environmental gradient:experimental design,evaluation methods,and results[J]. Forest Ecosystems, 2015, 2:17.DOI: 10.1186/s40663-015-0041-8.
[33]
周欧, 古丽米热·依力哈木, 祝维, 等. 不同密度和水分管理下毛白杨林分土壤水分特征[J]. 北京林业大学学报, 2024, 46(1):55-67.
ZHOU O, Yilihamu G, ZHU W, et al. Soil water characteristics of Populus tomentosa stands under different densities andwater treatments[J]. Journal of Beijing Forestry University, 2024, 46(1):55-67.DOI:10.12171/j.1000-1522.20230092.

基金

国家重点研发计划(2021YFD2201203)

责任编辑: 吴祝华
PDF(2153 KB)

Accesses

Citation

Detail

段落导航
相关文章

/