基于林分生长和径阶分配模型系统的红松人工林经营优化

杨瑞轲, 金星姬, PUKKALA Timo, 李凤日

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (4) : 117-127.

PDF(2366 KB)
PDF(2366 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (4) : 117-127. DOI: 10.12302/j.issn.1000-2006.202408014
专题报道Ⅲ:双碳视域下红松高质量资源培育专题(执行主编 方升佐 曹林)

基于林分生长和径阶分配模型系统的红松人工林经营优化

作者信息 +

Stand-level growth model system with diameter class disaggregation for optimizing the management of Korean pine plantation

Author information +
文章历史 +

摘要

【目的】构建黑龙江省红松(Pinus koraiensis)人工林的林分生长和径阶分配模型系统,从而优化林分经营策略,为制定经营方案和提升森林质量提供模型支持。【方法】基于1980—2023年黑龙江省218块红松人工林固定样地的复测数据,构建包含枯损模型、优势高生长方程、断面积模型以及Weibull径阶分配模型的生长预测系统。运用高斯-牛顿法和似乎不相关回归求解生长模型参数,并且采用矩解法恢复径阶分配模型中的直径分布参数。为验证模型组的适用性,采用差分进化(differential evolution,DE)算法,针对处于3个地位指数梯度(11.2、14.2、16.0 m)的红松人工林林分,开展以数量成熟龄为目标的经营优化,模拟不同经营措施对林分生长的影响。【结果】生长模型中的各组分解释了超过90%的变异性。采用似乎不相关回归最终得到的林分枯损模型和林分断面积模型的临界误差分别为16.769%和17.685%;利用矩解法对Weibull方程进行参数恢复时,Kolmogorov-Smirnov (KS)检验的通过率为96.946%;当应用生长和径阶分配模型系统进行林分蓄积预测时,临界误差为14.612%。优化结果表明,地位指数每提升2 m,间伐时间提前1~3 a,主伐时间为72~75 a。【结论】本研究构建的生长模型满足经营模拟过程中路径不变性、一致性和因果性的基本假设,提高了林分生长预测的可靠性。模型组和DE算法相结合能够提供有效的森林经营方案。

Abstract

【Objective】A system of stand-level growth models with diameter-class disaggregation was developed for Korean pine (Pinus koraiensis) plantations in Heilongjiang Province to optimize stand management strategies, providing model support for developing management schedules and enhancing forest quality.【Method】Based on the remeasurement data from 218 permanent plots in Korean pine plantations in Heilongjiang Province during 1980—2023, a model system consisting of models for mortality, dominant height, stand basal area and diameter-class disaggregation was constructed. The Weibull function was used to disaggregate the predictions over diameter classes. The parameters of the growth models were estimated using the Gauss-Newton method and seemingly unrelated regression. The method of moments was used to recover the diameter distribution parameters for the diameter-class disaggregation. To verify the applicability of the model system, the study used the differential evolution (DE) algorithm with a model system to perform stand-level management optimization to find the rotation length that maximized wood production in different site indices (11.2, 14.2, 16.0 m).【Result】The components of the dynamic growth model explained over 90% of the variation in the modelling data. The final critical errors for stand mortality and basal area model obtained using seemingly unrelated regression were 16.769% and 17.685%, respectively. When applying the method of moments for parameter estimation of the Weibull equation, the pass rate of the Kolmogorov-Smirnov test was 96.946%. When using the growth with diameter-class disaggregation for predicting stand volume, using an existing taper model, the critical error was 14.612%. The optimization results indicated that, for the three stands, the thinning is by 1-3 years later as site index improves by 2 m, with the final harvest age ranging from 72 to 75 years.【Conclusion】The growth model constructed in this study satisfies the basic assumptions of path-invariance, consistency, and causality during management simulations, thereby allowing reliable growth simulations. Integrating the model with the DE algorithm provides effective forest management prescriptions, offering useful advise for the management decisions of Korean pine plantations.

关键词

红松 / 林分生长模型 / 差分方程 / 林分经营决策

Key words

Pinus koraiensis (Korean pine) / stand growth model / difference equation / stand management decisions

引用本文

导出引用
杨瑞轲, 金星姬, PUKKALA Timo, . 基于林分生长和径阶分配模型系统的红松人工林经营优化[J]. 南京林业大学学报(自然科学版). 2025, 49(4): 117-127 https://doi.org/10.12302/j.issn.1000-2006.202408014
YANG Ruike, JIN Xingji, PUKKALA Timo, et al. Stand-level growth model system with diameter class disaggregation for optimizing the management of Korean pine plantation[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(4): 117-127 https://doi.org/10.12302/j.issn.1000-2006.202408014
中图分类号: S757   

参考文献

[1]
姚予龙, 邵彬, 李泽红. “一带一路” 倡议下中俄林业合作格局与资源潜力研究[J]. 资源科学, 2018, 40(11):2153-2167.
YAO Y L, SHAO B, LI Z H. Sino-Russian forestry cooperation pattern and resource potential under “the Belt and Road” initiative[J]. Resources Science, 2018, 40(11):2153-2167.
[2]
梅梦媛, 雷一东. 我国人工林新时代发展形势分析[J]. 世界林业研究, 2019, 32(3):73-77.
MEI M Y, LEI Y D. Analysis on development trend of China’s plantation in new era[J]. World Forestry Research, 2019, 32(3):73-77.DOI: 10.13348/j.cnki.sjlyyj.2019.0006.y.
[3]
BETTINGER P, BOSTON K, SIRY J P, et al. Forest management and planning[M]. 2nd ed. London: Academic Press, 2017.
[4]
徐颖, 蒋博, 金星姬, 等. 单木造材优化嵌入传统林分经营优化中的红松人工林精准经营模式[J]. 东北林业大学学报, 2024, 52(2):13-20.
XU Y, JIANG B, JIN X J, et al. Precision management model of Pinus koraiensis plantation with single wood material optimization embedding into traditional forest management optimization[J]. Journal of Northeast Forestry University, 2024, 52(2):13-20.DOI: 10.13759/j.cnki.dlxb.2024.02.011.
[5]
BRAVO F, FABRIKA M, AMMER C, et al. Modelling approaches for mixed forests dynamics prognosis, research gaps and opportunities[J]. Forest Systems, 2019, 28(1):eR002.DOI: 10.5424/fs/2019281-14342.
[6]
SELKIMÄKI M, GONZÁLEZ-OLABARRIA J R, TRASOBARES A, et al. Trade-offs between economic profitability,erosion risk mitigation and biodiversity in the management of uneven-aged Abies alba Mill.stands[J]. Annals of Forest Science, 2020, 77(1):12.DOI: 10.1007/s13595-019-0914-z.
[7]
LEE D, REPOLA J, BIANCHI S, et al. Calibration models for diameter and height growth of Norway spruce growing in uneven-aged stands in Finland[J]. Forest Ecology and Management, 2024,558:121783.DOI: 10.1016/j.foreco.2024.121783.
[8]
GARCÍA O. The state-space approach in growth modelling[J]. Canadian Journal of Forest Research, 1994, 24(9):1894-1903.DOI: 10.1139/x94-244.
[9]
ALLENⅡ M G, ANTÓN-FERNÁNDEZ C, ASTRUP R. A stand-level growth and yield model for thinned and unthinned managed Norway spruce forests in Norway[J]. Scandinavian Journal of Forest Research, 2020, 35(5/6):238-251.DOI: 10.1080/02827581.2020.1773525.
[10]
LEE D, CHOI J. Development of variable-density yield models with site index estimation for Korean pines and Japanese larch[J]. Forests, 2022, 13(7):1150.DOI: 10.3390/f13071150.
[11]
WALDY J, KERSHAW J A Jr, WEISKITTEL A, et al. Comparison of time-based versus state-space stand growth models for tropical hybrid Eucalyptus clonal plantations in Sumatera,Indonesia[J]. Canadian Journal of Forest Research, 2021, 51(8):1178-1187.DOI: 10.1139/cjfr-2020-0499.
[12]
WANG Y L, KERSHAW J A, DUCEY M J, et al. What diameter? What height? Influence of measures of average tree size on area-based allometric volume relationships[J]. Forest Ecosystems, 2024,11:100171.DOI: 10.1016/j.fecs.2024.100171.
[13]
PRADA M, GONZÁLEZ-GARCÍA M, MAJADA J, et al. Development of a dynamic growth model for sweet chestnut coppice:a case study in Northwest Spain[J]. Ecological Modelling, 2019,409:108761.DOI: 10.1016/j.ecolmodel.2019.108761.
[14]
WEST P W, RATKOWSKY D A. A state-space growth model for Eucalyptus pilularis in subtropical Australia,fitted with and without seemingly unrelated regression[J]. Australian Forestry, 2023, 86(3/4):134-142.DOI: 10.1080/00049158.2023.2286833.
[15]
STANKOVA T V, DIÉGUEZ-ARANDA U. Dynamic structural stand density management diagrams for even-aged natural stands and plantations[J]. Forest Ecology and Management, 2020,458:117733.DOI: 10.1016/j.foreco.2019.117733.
[16]
郭泽鑫, 胡中岳, 曹聪, 等. 广东主要森林类型林分生物量和碳储量模型研建[J]. 林业科学, 2023, 59(12):37-50.
GUO Z X, HU Z Y, CAO C, et al. Stand-level models of biomass and carbon stock for major forest types in Guangdong[J]. Scientia Silvae Sinicae, 2023, 59(12):37-50.
[17]
曾伟生, 孙乡楠, 王六如, 等. 东北林区10种主要森林类型的蓄积量、生物量和碳储量模型研建[J]. 北京林业大学学报, 2021, 43(3):1-8.
ZENG W S, SUN X N, WANG L R, et al. Developing stand volume,biomass and carbon stock models for ten major forest types in forest region of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(3):1-8.DOI: 10.12171/j.1000-1522.20200058.
[18]
刘宁, 王彬, 郑淑霞, 等. 油松人工林相容性生长联立方程组模型构建[J]. 西南林业大学学报(自然科学), 2024, 44(2):119-126.
LIU N, WANG B, ZHENG S X, et al. Construction of compatible growth simultaneous equations model for Pinus tabuliformis plantation[J]. Journal of Southwest Forestry University (Natural Sciences), 2024, 44(2):119-126.
[19]
李际平, 郭文清, 曹小玉. 基于非线性度量误差的马尾松相容性立木生物量模型[J]. 中南林业科技大学学报, 2013, 33(6):22-25,32.
LI J P, GUO W Q, CAO X Y. Compatibility single-tree biomass model for Pinus massoniana stands based on nonlinear measurement error[J]. Journal of Central South University of Forestry & Technology, 2013, 33(6):22-25,32.DOI: 10.14067/j.cnki.1673-923x.2013.06.021.
[20]
CAO Q V. Predicting future diameter distributions given current stand attributes[J]. Canadian Journal of Forest Research, 2022, 52(4):561-567.DOI: 10.1139/cjfr-2021-0216.
[21]
SA Q L, JIN X J, PUKKALA T, et al. Developing Weibull-based diameter distributions for the major coniferous species in Heilongjiang Province,China[J]. Journal of Forestry Research, 2023, 34(6):1803-1815.DOI: 10.1007/s11676-023-01610-9.
[22]
PASALODOS-TATO M, PUKKALA T. Optimising the management of even-aged Pinus sylvestris L.stands in Galicia,north-western Spain[J]. Annals of Forest Science, 2007, 64(7):787-798.DOI: 10.1051/forest:2007059.
[23]
TONG Q P, JIN X J, PUKKALA T, et al. Stochastic optimization of the management schedule of Korean pine plantations[J]. Forests, 2024, 15(6):935.DOI: 10.3390/f15060935.
[24]
王鹤智. 东北林区林分生长动态模拟系统的研究[D]. 哈尔滨: 东北林业大学, 2012.
WANG H Z. Study on dynamic simulation system of stand growth in northeast forest region[D]. Harbin: Northeast Forestry University, 2012.
[25]
DIÉGUEZ-ARANDA U, CASTEDO-DORADO F, ÁLVAREZ-GONZÁLEZ J G, et al. Modelling mortality of Scots pine (Pinus sylvestris L.) plantations in the northwest of Spain[J]. European Journal of Forest Research, 2005, 124(2):143-153.DOI: 10.1007/s10342-004-0043-5.
[26]
曹元帅, 孙玉军. 基于广义代数差分法的杉木人工林地位指数模型[J]. 南京林业大学学报(自然科学版), 2017, 41(5):79-84.
CAO Y S, SUN Y J. Generalized algebraic difference site index model for Chinese fir plantation[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41(5):79-84.DOI: 10.3969/j.issn.1000-2006.201611054.
[27]
GOMEZ-GARCIA E, CRECENTE-CAMPO F, TOBIN B, et al. A dynamic volume and biomass growth model system for even-aged downy birch stands in south-western Europe[J]. Forestry, 2014, 87(1):165-176.DOI: 10.1093/forestry/cpt045.
[28]
牛亦龙, 董利虎, 李凤日. 基于广义代数差分法的长白落叶松人工林地位指数模型[J]. 北京林业大学学报, 2020, 42(2):9-18.
NIU Y L, DONG L H, LI F R. Site index model for Larix olgensis plantation based on generalized algebraic difference approach derivation[J]. Journal of Beijing Forestry University, 2020, 42(2):9-18.
[29]
李凤日. 测树学[M]. 5版. 北京: 中国林业出版社, 2024.
LI F R. Dendrology[M]. 5th ed. Beijing: China Forestry Publishing House, 2024.
[30]
CRECENTE-CAMPO F, TOMÉ M, SOARES P, et al. A generalized nonlinear mixed-effects height-diameter model for Eucalyptus globulus L.in northwestern Spain[J]. Forest Ecology and Management, 2010, 259(5):943-952.DOI: 10.1016/j.foreco.2009.11.036.
[31]
JIN X J, PUKKALA T, LI F R, et al. Optimal management of Korean pine plantations in multifunctional forestry[J]. Journal of Forestry Research, 2017, 28(5):1027-1037.DOI: 10.1007/s11676-017-0397-4.
[32]
萨其拉. 黑龙江省典型人工针叶林直径分布模型[D]. 哈尔滨: 东北林业大学, 2023.
SA Q L. Diameter distribution models for the typical coniferous plantations in Heilongjiang Province[D]. Harbin: Northeast Forestry University, 2023.DOI: 10.27009/d.cnki.gdblu.2023.000872.
[33]
CAO Q V. Predicting parameters of a weibull function for modeling diameter distribution[J]. Forest Science, 2004, 50(5):682-685.DOI: 10.1093/forestscience/50.5.682.
[34]
BORDERS B E, PATTERSON W D. Projecting stand tables:a comparison of the weibull diameter distribution method,a percentile-based projection method,and a basal area growth projection method[J]. Forest Science, 1990, 36(2):413-424.DOI: 10.1093/forestscience/36.2.413.
[35]
HUANG S, YANG Y, WANG Y, et al. A critical look at procedures for validating growth and yield models[J]. CABI, 2003(1): 271-292. DOI: 10.1079/9780851996936.0271.
[36]
ARDIA D, BOUDT K, CARL P, et al. Differential evolution with DEoptim[J]. The R Journal, 2011, 3(1):27.DOI: 10.32614/rj-2011-005.
[37]
倪成才, 于福平, 张玉学, 等. 差分生长模型的应用分析与研究进展[J]. 北京林业大学学报, 2010, 32(4):284-292.
NI C C, YU F P, ZHANG Y X, et al. Application analysis and recent advances of projection growth models[J]. Journal of Beijing Forestry University, 2010, 32(4):284-292.DOI: 10.13332/j.1000-1522.2010.04.022.
[38]
STEFANELLO F R, NETTO S P, BEHLING A, et al. Site index curves using the generalized algebraic difference approach-Gada in planted forests of Pinus taeda L.in the Midwest of Santa Catarina,Brazil[J]. Forest Ecology and Management, 2024,564:121999.DOI: 10.1016/j.foreco.2024.121999.
[39]
PRETZSCH H, BRAVO-OVIEDO A, HILMERS T, et al. With increasing site quality asymmetric competition and mortality reduces Scots pine (Pinus sylvestris L.) stand structuring across Europe[J]. Forest Ecology and Management, 2022,520:120365.DOI: 10.1016/j.foreco.2022.120365.
[40]
ZELLNER A. Estimators for seemingly unrelated regression equations:some exact finite sample results[J]. Journal of the American Statistical Association, 1963, 58(304):977-992.DOI: 10.1080/01621459.1963.10480681.

基金

国家自然科学基金区域创新发展联合基金项目(U21A20244)
国家自然科学基金项目(32071758)

编辑: 李燕文
PDF(2366 KB)

Accesses

Citation

Detail

段落导航
相关文章

/