红松人工林多目标经营模型

李爽, 蒋博, 金星姬, PUKKALA Timo

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (6) : 55-63.

PDF(1891 KB)
PDF(1891 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (6) : 55-63. DOI: 10.12302/j.issn.1000-2006.202409004
专题报道Ⅰ: 第十四届海峡两岸森林经理研讨会专题(执行主编 李凤日 曹林)

红松人工林多目标经营模型

作者信息 +

Multi-objective management models for Pinus koraiensis plantations

Author information +
文章历史 +

摘要

【目的】以下层伐为约束条件,通过优化不同立地指数下红松(Pinus koraiensis)人工林的经营措施和构建经营模型,指导红松人工林的多目标经营并制订黑龙江省红松人工林多目标经营方案,提高我国人工林多目标经营水平。【方法】利用多属性效用函数构建以林分木材产量(WP)、大径材产量(LLP)和球果产量(CY)同时最大为经营目标的多目标方程WP、LLP、CY,3个经营目标的权重分别为:0.25、0.25、0.50。组合林分生长模拟器和差分进化算法,优化求解黑龙江省41块红松人工幼龄林样地的最佳采伐措施。以林分变量作为预测变量,构建采伐时林分密度、不同径阶的采伐强度(由logistic函数参数描述,该参数指示间伐强度为50%时的林分平均胸径)、主伐时林分平均胸径3个模型。【结果】最佳间伐时林分密度与平均胸径呈明显负相关,与立地指数呈正相关;logistic函数参数与平均胸径和立地指数呈正相关;主伐时林分平均胸径与立地指数呈正相关,与林分密度呈负相关。采伐时林分密度、采伐强度、主伐时林分平均胸径3个模型的校正后决定系数( R a 2)分别为0.930、0.798和0.965,平均偏差(ME)分别为2.000 株/hm2、-0.015和0.128 cm,平均绝对误差(MAE)分别为91.000 株/hm2、1.238和0.165 cm。【结论】采伐时林分密度与地位指数呈正相关,与平均胸径呈负相关;间伐时林分平均胸径随地位指数的增加而增加;主伐时立地较差的林分比立地较好的林分平均胸径更小。

Abstract

【Objective】Management measurement of Pinus koraiensis plantations of different site indexes were optimized and the management models were constructed with a constraint that thinning from below, to guide the multi-objective management and formulate the multi-objective management plans of Pinus koraiensis plantations in Heilongjiang Province, so as to improve the multi-objective management level of plantations in China.【Method】Multi-attribute utility functions including wood production (WP), large log production (LLP) and cone yield (CY) were maximized using the following weights for the three management objectives: 0.25, 0.25 and 0.50 respectively. The management schedule was optimized for 41 plots of young Pinus koraiensis plantations in Heilongjiang Province, using a stand growth simulator and a differential evolution optimization algorithm. Three models were developed using stand variables as predictors: the number of trees per hectare at thinning, thinning intensity in different diameter classes (described by a parameter of the logistic function, indicating the diameter when the thinning intensity is 50%), and the average diameter at breast height (DBH) at clear-cutting.【Result】The optimal number of trees at thinning was significantly negatively correlated with the average diameter at breast height and positively correlated with the site index. The parameter of the logistic function showed a positive correlation with the average diameter at breast height and the site index. The average diameter at clear-cutting was positively correlated with the site index and negatively correlated with the number of trees. The R a 2 of the three models of number of trees per hectare during thinning, thinning intensity and average diameter at breast height during clear-cutting were at 0.930, 0.798 and 0.965, respectively. The mean error of the three models was at 2.000 trees/hm2, -0.015 and 0.128 cm, and the mean of absolute errors was at 91.000 trees/hm2, 1.238 and 0.165 cm, respectively.【Conclusion】The average number of trees in the forest at thinning is positively correlated with the site index and negatively correlated with average stand DBH. The average stand DBH increases with the increase of the site index at thinning. The average stand DBH of forests with poor stand during clear-cutting is smaller than that of those with good stand.

关键词

红松人工林 / 多目标经营模型 / 经营准则 / 逻辑斯蒂函数 / 差分进化

Key words

Pinus koraiensis plantation / multi-objective management model / management guideline / Logistic function / differential evolution

引用本文

导出引用
李爽, 蒋博, 金星姬, . 红松人工林多目标经营模型[J]. 南京林业大学学报(自然科学版). 2025, 49(6): 55-63 https://doi.org/10.12302/j.issn.1000-2006.202409004
LI Shuang, JIANG Bo, JIN Xingji, et al. Multi-objective management models for Pinus koraiensis plantations[J]. Journal of Nanjing Forestry University (Natural Sciences Edition). 2025, 49(6): 55-63 https://doi.org/10.12302/j.issn.1000-2006.202409004
中图分类号: S757   

参考文献

[1]
魏晓慧, 孙玉军, 梅光义, 等. 基于多功能经营的森林资源评价[J]. 中南林业科技大学学报, 2013, 33(11):103-108.
WEI X H, SUN Y J, MEI G Y, et al. Comprehensive evaluation of forest resources based on multi-function management[J]. Journal of Central South University of Forestry & Technology, 2013, 33(11):103-108.DOI: 10.14067/j.cnki.1673-923x.2013.11.002.
[2]
曾伟生, 杨学云. 我国用材林资源状况及木材安全分析[J]. 林业资源管理, 2023(1):17-24.
ZENG W S, YANG X Y. Analysis of timber forest resources status and timber safety analysis in China[J]. Forest Resources Management, 2023(1):17-24.DOI: 10.13466/j.cnki.lyzygl.2023.01.003.
[3]
董诗涛, 郎晓雪, 施凯泽, 等. 基于森林资源二类调查数据的思茅松人工林经验收获表的编制[J]. 林业调查规划, 2019, 44(2):7-11.
DONG S T, LANG X X, SHI K Z, et al. Compiling of empirical yield table of Pinus kesiya var.langbianensis plantation based on forest resource inventory data[J]. Forest Inventory and Planning, 2019, 44(2):7-11.DOI: 10.3969/j.issn.1671-3168.2019.02.002.
[4]
BARRETT T M, DAVIS L S, SCHURR F G. Using tree growth and yield simulators to create ecological yield tables for silvicultural prescriptions[J]. Western Journal of Applied Forestry, 1994, 9(3):91-94.DOI: 10.1093/wjaf/9.3.91.
[5]
姜兴艳, 曾思齐, 石振威, 等. 湖南省楠木次生林收获表的研制[J]. 中南林业科技大学学报, 2020, 40(11):55-64.
JIANG X Y, ZENG S Q, SHI Z W, et al. Establishmentof the yieldtables of Phoebe zhennan secondary forest in Hunan Province[J]. Journal of Central South University of Forestry & Technology, 2020, 40(11):55-64.DOI: 10.14067/j.cnki.1673-923x.2020.11.008.
[6]
KUMAR B M, LONG J N, KUMAR P. A density management diagram for teak plantations of Kerala in Peninsular India[J]. Forest Ecology and Management, 1995, 74(1/2/3):125-131.DOI: 10.1016/0378-1127(94)03499-M.
[7]
戚维江, 高绪汤, 肖思友. 编制辽宁省刺槐人工林林分密度管理图[J]. 东北林业大学学报, 1991, 19(3):96-102.
QI W J, GAO X T, XIAO S Y. Studies on the stand density control diagram for black locust plantation in Liaoning Province[J]. Journal of Northeast Forestry University, 1991, 19(3):96-102.
[8]
CASTEDO-DORADO F, CRECENTE-CAMPO F, ÁLVAREZ P, et al. Development of a stand density management diagram for radiata pine stands including assessment of stand stability[J]. Forestry:an International Journal of Forest Research, 2009, 82(1):1-16.DOI: 10.1093/forestry/cpm032.
[9]
NEWTON P F. Stand density management diagrams:review of their development and utility in stand-level management planning[J]. Forest Ecology and Management, 1997, 98(3):251-265.DOI: 10.1016/S0378-1127(97)00086-8.
[10]
王成德. 人工林树冠生长模拟及密度控制决策技术研究:以杉木和桉树为例[D]. 北京: 北京林业大学, 2019.
WANG C D. Study on crown growth simulation and density control decision-making technology of plantation:a case study of Chinese fir and Eucalyptus[D]. Beijing: Beijing Forestry University, 2019.DOI: 10.26949/d.cnki.gblyu.2019.000077.
[11]
AVERY T E, BURKHART H E. Forest measurements[M]. New York: McGraw-Hill, 1983.
[12]
PUKKALA T. Improved guidelines for any-aged forestry[J]. Journal of Forestry Research, 2022, 33(5):1443-1457.DOI: 10.1007/s11676-022-01473-6.
[13]
PASALODOS-TATO M, PUKKALA T. Optimising the management of even-aged Pinus sylvestris L. stands in Galicia,north-western Spain[J]. Annals of Forest Science, 2007, 64(7):787-798.DOI: 10.1051/forest:2007059.
[14]
GONZÁLEZ-OLABARRIA J R, PALAHÍ M, PUKKALA T, et al. Optimising the management of Pinus nigra Arn.stands under endogenous risk of fire in Catalonia[J]. Forest Systems, 2008, 17(1):10-17.DOI: 10.5424/srf/2008171-01019.
[15]
PALAHÍ M, PUKKALA T. Optimising the management of Scots pine (Pinus sylvestris L.) stands in Spain based on individual-tree models[J]. Annals of Forest Science, 2003, 60(2):105-114.DOI: 10.1051/forest:2003002.
[16]
PASALODOS-TATO M, PUKKALA T, ROJO ALBORECA A.Optimal management of Pinus pinaster in Galicia (Spain) under risk of fire[J]. International Journal of Wildland Fire, 2010, 19(7):937.DOI: 10.1071/wf08150.
[17]
JIN X J, PUKKALA T, LI F R. A new approach to the development of management instructions for tree plantations[J]. Forestry, 2019, 92(2):196-205.DOI: 10.1093/forestry/cpy048.
[18]
GONZÁLEZ-OLABARRIA J R, PUKKALA T. Integrating fire risk considerations in landscape-level forest planning[J]. Forest Ecology and Management, 2011, 261(2):278-287.DOI: 10.1016/j.foreco.2010.10.017.
[19]
SELKIMÄKI M, GONZÁLEZ-OLABARRIA J R, TRASOBARES A, et al. Trade-offs between economic profitability,erosion risk mitigation and biodiversity in the management of uneven-aged Abies alba Mill.stands[J]. Annals of Forest Science, 2020, 77(1):12.DOI: 10.1007/s13595-019-0914-z.
[20]
HAIGHT R G, MONSERUD R A. Optimizing any-aged management of mixed-species stands:II.effects of decision criteria[J]. Forest Science, 1990, 36(1):125-144.DOI: 10.1093/forestscience/36.1.125.
[21]
JIN X J, PUKKALA T, LI F R, et al. Developing growth models for tree plantations using inadequate data-a case for Korean pine in northeast China[J]. Silva Fennica, 2019, 53(4):28-39.DOI: 10.14214/sf.10217.
[22]
JIN X J, LI F R, PUKKALA T, et al. Modelling the cone yields of Korean pine[J]. Forest Ecology and Management, 2020,464:118086.DOI: 10.1016/j.foreco.2020.118086.
[23]
宋磊, 金星姬, PUKKALA Timo, 等. 长白落叶松人工林多目标经营模式研究[J]. 南京林业大学学报(自然科学版), 2023, 47(2):150-158.
摘要
【目的】我国林业目前处于提高森林资源质量和转变发展方式的关键阶段,林分水平的经营决策对科学制订森林经营规程、提高森林质量具有重要意义。利用模拟-优化系统,探究不同林分条件下的最佳经营模式,可为提高黄花落叶松(Larix olgensis)(俗名长白落叶松)人工林多目标经营水平提供理论基础和实施方案。【方法】以标准长白落叶松人工幼龄林为研究对象,利用多属性效用函数和妥协性分析构建包括净现值、大径材产量和林木碳储量的多目标经营模型,链接林分生长模型与粒子群优化算法,优化不同经营方程并提出经营模式。【结果】在不同造林密度(2 500和3 300株/hm<sup>2</sup>)及不同地位指数(16~22 m)下两种多目标方程(MOF<sub>1</sub>和MOF<sub>2</sub>)估算的林分主伐年龄为54~96 a,净现值为38 047.8~109 194.9 元/hm<sup>2</sup>,大径材年均产量为1.8~4.4 m<sup>3</sup>/(hm<sup>2</sup>&#x000B7;a),轮伐期内年均林木碳储量为59.7~103.1 t/(hm<sup>2</sup>&#x000B7;a)。随着林木碳储量权重的增加(从MOF<sub>1</sub>到MOF<sub>2</sub>),大径材产量提高,但净现值降低。【结论】本研究提出的多目标经营模式可以满足对木材产量、质量和经济效益的需求,同时兼顾了森林碳储量,其中多目标经营方程MOF<sub>1</sub>是权衡各目标效益的折中方案,研究结论对提升我国森林多功能经营管理水平具有重要借鉴意义。
SONG L, JIN X J, PUKKALA T, et al. Research on multi-objective management schedules of Larix olgensis plantations[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2023, 47(2):150-158.DOI: 10.12302/j.issn.1000-2006.202201034.
[24]
国家林业局. 森林采伐作业规程:LY/T 1646—2005[S]. 北京: 中国标准出版社, 2005.
State Forestry Administration of the People's Republic of China. Code of forest harvesting:LY/T 1646—2005[S]. Beijing: Standards Press of China, 2005.
[25]
PUKKALA T. Optimizing continuous cover management of boreal forest when timber prices and tree growth are stochastic[J]. Forest Ecosystems, 2015(2): 6.DOI: 10.1186/s40663-015-0028-5.
[26]
PUKKALA T. Instructions for optimal any-aged forestry[J]. Forestry, 2018, 91(5):563-574.DOI: 10.1093/forestry/cpy015.
[27]
JIN X J, PUKKALA T, LI F R, et al. Optimal management of Korean pine plantations in multifunctional forestry[J]. Journal of Forestry Research, 2017, 28(5):1027-1037.DOI: 10.1007/s11676-017-0397-4.
[28]
孙海丽. 差分进化算法改进及其应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
SUN H L. Improvement of differential evolution algorithm and its application[D]. Harbin: Harbin Institute of Technology, 2020.DOI: 10.27061/d.cnki.ghgdu.2020.006546.
[29]
王祖玲. 面向全局和多模态优化问题的差分进化算法改善研究[D]. 杭州: 杭州师范大学, 2022.
WANG Z L. Improvement of differential evolution algorithm and its application[D]. Hangzhou: Hangzhou Normal University, 2022.DOI: 10.27076/d.cnki.ghzsc.2022.000116.
[30]
宋磊. 黑龙江省长白落叶松人工林多目标经营模型[D]. 哈尔滨: 东北林业大学, 2023.
SONG L. Multi-objective management models of larch (Larix olgensis A. Henry) plantations in Heilongjiang Province[D]. Harbin: Northeast Forestry University, 2023.DOI: 10.27009/d.cnki.gdblu.2023.000874.
[31]
PASALODOS-TATO M, PUKKALA T, CASTEDO-DORADO F. Models for the optimal management of Pinus radiata D.Don in Galicia (north-western Spain) under risk of fire[J]. Allgemeine Forst und Jagdzeitung. 2009, 180(11/12):238-249. DOI:10.1007/s10457-008-9183-9.
[32]
HYYTIÄINEN K, TAHVONEN O, VALSTA L. Optimum juvenile density,harvesting,and stand structure in even-aged Scots pine stands[J]. Forest Science, 2005, 51(2):120-133.DOI: 10.1093/forestscience/51.2.120.
The economics of timber production is studied using empirical data for various juvenile densities and a distance-independent individual-tree growth model specified for Finnish Scots pine (Pinus sylvestris [L.]) stands. Our results imply that explicit inclusion of quality effects on prices increases optimum juvenile density. In addition, quality effects make economic surplus of forestry more sensitive to variations in juvenile density. Optimum thinnings remove trees that have no prospects for high relative value growth. Optimum thinnings are selective thinnings that remove inferior-quality trees, some of the smallest trees and, contrary to conventions, those of the largest trees that fulfill the sawlog dimensions. Thinnings removing trees strictly above and/or below certain tree diameters homogenize the remaining growing stock by narrowing the diameter distribution. Homogeneous stand structure is economically favorable at final clearcutting because the stand can be clearcut promptly after the majority of trees have reached sawlog dimensions and have experienced the last high peak in value growth. FOR. SCI. 51(2):120–133.
[33]
TRASOBARES A, PUKKALA T. Optimising the management of uneven-aged Pinus sylvestris L. and Pinus nigra Arn.mixed stands in Catalonia,north-east Spain[J]. Annals of Forest Science, 2004, 61(8):747-758.DOI: 10.1051/forest:2004071.
[34]
赵俊卉, 亢新刚, 刘燕. 长白山主要针叶树种最优树高曲线研究[J]. 北京林业大学学报, 2009, 31(4):13-18.
ZHAO J H, KANG X G, LIU Y. Optimal height-diameter models for dominant coniferous species in Changbai Mountain,northeastern China[J]. Journal of Beijing Forestry University, 2009, 31(4):13-18.DOI: 10.3321/j.issn:1000-1522.2009.04.003.
[35]
黄宏超, 谢栋博, 段光爽, 等. 华北落叶松和白桦半参数树高曲线模型[J]. 林业科学, 2022, 58(10):101-110.
HUANG H C, XIE D B, DUAN G S, et al. Construction of semiparametric height curve model for larch and birch[J]. Scientia Silvae Sinicae, 2022, 58(10):101-110.DOI: 10.11707/j.1001-7488.20221010.
[36]
张树森, 王蒙, 董利虎. 黑龙江省小黑杨人工林分生长收获模型研究[J]. 防护林科技, 2017(8):39-41.
ZHANG S S, WANG M, DONG L H. Growth and yield models of Populous simonii × P.nigra plantation in Heilongjiang Province[J]. Protection Forest Science and Technology, 2017(8):39-41.DOI: 10.13601/j.issn.1005-5215.2017.08.012.
[37]
OWARI T, TATSUMI S, NING L Z, et al. Height growth of Korean pine seedlings planted under strip-cut larch plantations in northeast China[J]. International Journal of Forestry Research, 2015,2015:178681.DOI: 10.1155/2015/178681.
[38]
WANG S Z, DAI L M, LIU G H, et al. Modeling diameter distribution of the broadleaved-Korean pine mixed forest on Changbai Mountains of China[J]. Science in China Series E:Technological Sciences, 2006, 49(1):177-188.DOI: 10.1007/s11431-006-8119-8.
[39]
COUTURE S, REYNAUD A. Multi-stand forest management under a climatic risk:do time and risk preferences matter?[J]. Environmental Modeling & Assessment, 2008, 13(2):181-193.DOI: 10.1007/s10666-007-9121-7.
[40]
MIINA J, PUKKALA T, HOTANEN J P, et al. Optimizing the joint production of timber and bilberries[J]. Forest Ecology and Management, 2010, 259(10):2065-2071.DOI: 10.1016/j.foreco.2010.02.017.
[41]
PUKKALA T, LÄHDE E, LAIHO O. Stand management optimization-the role of simplifications[J]. Forest Ecosystems, 2014, 1(1):3.DOI: 10.1186/2197-5620-1-3.
[42]
RAUTIAINEN O, PUKKALA T, MIINA J. Optimising the management of even-aged Shorea robusta stands in southern Nepal using individual tree growth models[J]. Forest Ecology and Management, 2000, 126(3):417-429.DOI: 10.1016/S0378-1127(99)00112-7.

基金

国家重点研发计划(2022YFD2201002)
国家自然科学基金区域创新发展联合基金项目(U21A20244)

编辑: 李燕文
PDF(1891 KB)

Accesses

Citation

Detail

段落导航
相关文章

/