外源脱落酸与低温预处理结合对红松体胚成熟的影响

史玉洁, 任悦, 汤铄然, 杨玲

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (4) : 71-78.

PDF(15168 KB)
PDF(15168 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (4) : 71-78. DOI: 10.12302/j.issn.1000-2006.202409034
专题报道Ⅱ:发展林业新质生产力系列专题一:林木体细胞胚胎发生专题(执行主编 尹佟明 陈金慧 施季森)

外源脱落酸与低温预处理结合对红松体胚成熟的影响

作者信息 +

Effect of exogenous abscisic acid combined with low temperature pretreatment on Pinus koraiensis somatic embryo maturation

Author information +
文章历史 +

摘要

【目的】阐明外源脱落酸(ABA)结合低温预处理对红松(Pinus koraiensis)体胚成熟的影响,揭示其对红松胚性细胞分化及代谢物积累的作用机制,筛选最佳培养条件。【方法】以红松胚性愈伤组织为材料,采用4种不同时长(0、2、4、6 d)的低温(4 ℃)结合体胚成熟培养基中6种质量浓度梯度(0、5、10、20、50、100 mg/L)的ABA处理,测定愈伤组织在代谢过程中营养物质的活性及相关生理生化指标,系统分析不同处理组合对体胚成熟的影响。【结果】①20 mg/L ABA结合4 ℃低温处理2 d时,红松体胚产量是对照的9.90倍;②该处理贮藏物质质量分数最高,过氧化物酶(POD)和过氧化氢酶(CAT)活性也达到最高,分别为59.45、98.96 U/g,而H2O2摩尔质量浓度在这一处理下最低,为0.53 μmol/mg,表明抗氧化系统有效缓解了氧化损伤;③优化培养条件获得的体胚经萌发培养后,再生植株移栽成活率达到45%。【结论】20 mg/L外源ABA结合4 ℃低温预处理2 d是红松体胚发生与成熟的最适条件。本研究可为红松优质品种高效繁殖提供技术支持,进一步推动红松遗传资源的有效保护、优良品种的选育与快速繁育体系的构建。

Abstract

【Objective】This study aims to elucidate the effects of exogenousabscisic acid(ABA) combined with low-temperature pretreatment on the maturation of Pinus koraiensis somatic embryos, unravel the mechanisms regulating embryogenic cell differentiation and metabolite accumulation, and identify the optimal culture conditions.【Method】Using P. koraiensis embryogenic callus as the material, four cold durations (0, 2, 4 and 6 days) at 4 ℃ were combined with six ABA concentrations (0, 5, 10, 20, 50, 100 mg/L) medium. The activity of nutrients and related physiological and biochemical indicators the callus were measured, and the effects of different treatment combinations on somatic embryo maturation were systematically evaluated.【Result】(1) 20 mg/L ABA with two days cold pretreatment increased somatic embryo yield 9.90 times versus control. (2) In this treatment group, the contents of storage substances reached the highest levels, and activities of peroxidase (POD) and catalase (CAT) were also at their peak, reaching 59.45 and 98.96 U/g, respectively. Meanwhile, H2O2 content was the lowest at 0.53 μmol/mg, indicating that the antioxidant system effectively mitigated oxidative damage. (3) Somatic embryos obtained under optimized culture conditions exhibited a regeneration rate of 45% after germination and successful transplantation.【Conclusion】The combination of 20 mg/L exogenous ABA with low-temperature pretreatment at 4 ℃ for two days was identified as the optimal condition for somatic embryo induction and maturation in P. koraiensis. This study provides technical support for the efficient propagation of elite P. koraiensis varieties, contributing to the effective conservation of genetic resources, the selection of superior cultivars, and the development of a rapid propagation system.

关键词

红松 / 体胚成熟 / 脱落酸 / 低温预处理 / 生理生化

Key words

Pinus koraiensis / somatic embryo maturation / abscisic acid (ABA) / low temperature pretreatment / physiology and biochemistry

引用本文

导出引用
史玉洁, 任悦, 汤铄然, . 外源脱落酸与低温预处理结合对红松体胚成熟的影响[J]. 南京林业大学学报(自然科学版). 2025, 49(4): 71-78 https://doi.org/10.12302/j.issn.1000-2006.202409034
SHI Yujie, REN Yue, TANG Shuoran, et al. Effect of exogenous abscisic acid combined with low temperature pretreatment on Pinus koraiensis somatic embryo maturation[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(4): 71-78 https://doi.org/10.12302/j.issn.1000-2006.202409034
中图分类号: S722.3   

参考文献

[1]
WANG J, WANG G G, ZHANG T, et al. Use of direct seeding and seedling planting to restore Korean pine (Pinus koraiensis Sieb.Et Zucc.) in secondary forests of Northeast China[J]. Forest Ecology and Management, 2021,493:119243.DOI: 10.1016/j.foreco.2021.119243.
[2]
LIU C J, LIN W G, FENG C R, et al. A new grafting method for watermelon to inhibit rootstock regrowth and enhance scion growth[J]. Agriculture, 2021, 11(9):812.DOI: 10.3390/agriculture11090812.
[3]
DODEMAN V. Zygotic embryogenesis versus somatic embryogenesis[J]. Journal of Experimental Botany, 1997, 48(313):1493-1509.DOI: 10.1093/jexbot/48.313.1493.
[4]
ISAH T. Induction of somatic embryogenesis in woody plants[J]. Acta Physiologiae Plantarum, 2016, 38(5):118.DOI: 10.1007/s11738-016-2134-6.
[5]
TIPPANI R, NANNA R S, MAMIDALA P, et al. Assessment of genetic stability in somatic embryo derived plantlets of Pterocarpus marsupium Roxb.using inter-simple sequence repeat analysis[J]. Physiology and Molecular Biology of Plants, 2019, 25(2):569-579.DOI: 10.1007/s12298-018-0602-8.
[6]
郭家雁, 张霞, 丁喜莲, 等. 不同处理诱导新海16号体细胞胚胎同步化发生[J]. 棉花学报, 2017, 29(4):385-392.
GUO J Y, ZHANG X, DING X L, et al. Synchronized somatic embryogenesis of ‘Xinhai 16’ induced by different treatments[J]. Cotton Science, 2017, 29(4):385-392.
[7]
王萍, 卫居香, 李宜程, 等. 低温预处理对大豆未成熟子叶胚胎发生影响的研究[J]. 吉林农业大学学报, 2002, 24(3):27-29.
WANG P, WEI J X, LI Y C, et al. Effect of pretreatment with low temperature on embryogenesis of immature Cotyledon in soybean[J]. Journal of Jilin Agricultural University, 2002, 24(3):27-29.DOI: 10.13327/j.jjlau.2002.03.007.
[8]
GAO F, SHI Y J, WANG R R, et al. Optimization of key technologies for induction of embryogenic callus and maturation of somatic embryos in Korean pine (Pinus koraiensis)[J]. Forests, 2023, 14(4):850.DOI: 10.3390/f14040850.
[9]
VARIS S, AHOLA S, JAAKOLA L, et al. Reliable and practical methods for cryopreservation of embryogenic cultures and cold storage of somatic embryos of Norway spruce[J]. Cryobiology, 2017, 76:8-17.DOI: 10.1016/j.cryobiol.2017.05.004.
[10]
TANG S R, YANG L. Physiological and transcriptome sequencing analysis of exogenous ABA to regulate maturation of Korean pine somatic embryos[J]. Plant Cell,Tissue and Organ Culture (PCTOC), 2025, 161(1):12.DOI: 10.1007/s11240-025-03018-1.
[11]
PARK H Y, SAINI R K, KEUM Y S, et al. Exploring somatic embryogenesis in Ajuga multiflora Bunge:profiling lipophilic metabolites via HPLC,GC-FID,and GCMS-analysis[J]. Scientia Horticulturae, 2024,332:113228.DOI: 10.1016/j.scienta.2024.113228.
[12]
de FREITAS FRAGA H P, do NASCIMENTO VIEIRA L, PUTTKAMMER C C, et al. Glutathione and abscisic acid supplementation influences somatic embryo maturation and hormone endogenous levels during somatic embryogenesis in Podocarpus lambertii Klotzsch ex Endl[J]. Plant Science, 2016, 253:98-106.DOI: 10.1016/j.plantsci.2016.09.012.
[13]
PAVLOVIC T, MARGARIT E, MÜLLER G L, et al. Differential metabolic reprogramming in developing soybean embryos in response to nutritional conditions and abscisic acid[J]. Plant Molecular Biology, 2023, 113(1):89-103.DOI: 10.1007/s11103-023-01377-x.
[14]
ELIÁŠOVÁ K, KONRÁDOVÁ H, DOBREV P I, et al. Desiccation as a post-maturation treatment helps complete maturation of Norway spruce somatic embryos:carbohydrates,phytohormones and proteomic status[J]. Frontiers in Plant Science, 2022,13:823617.DOI: 10.3389/fpls.2022.823617.
[15]
LI S H, LIU S, ZHANG Q, et al. The interaction of ABA and ROS in plant growth and stress resistances[J]. Frontiers in Plant Science, 2022,13:1050132.DOI: 10.3389/fpls.2022.1050132.
[16]
PENG C X, GAO F, WANG H, et al. Physiological and biochemical traits in Korean pine somatic embryogenesis[J]. Forests, 2020, 11(5):577.DOI: 10.3390/f11050577.
[17]
PENG C X, GAO F, WANG H, et al. Optimization of maturation process for somatic embryo production and cryopreservation of embryogenic tissue in Pinus koraiensis[J]. Plant Cell,Tissue and Organ Culture (PCTOC), 2021, 144(1):185-194.DOI: 10.1007/s11240-020-01918-y.
[18]
GAO F, PENG C X, WANG H, et al. Key techniques for somatic embryogenesis and plant regeneration of Pinus koraiensis[J]. Forests, 2020, 11(9):912.DOI: 10.3390/f11090912.
[19]
GAO F, WANG R R, SHI Y J, et al. Reactive oxygen metabolism in the proliferation of Korean pine embryogenic callus cells promoted by exogenous GSH[J]. Scientific Reports, 2023,13:2218.DOI: 10.1038/s41598-023-28387-5.
[20]
PRADKO A G, LITVINOVSKAYA R P, SAUCHUK A L, et al. A new ELISA for quantification of brassinosteroids in plants[J]. Steroids, 2015, 97:78-86.DOI: 10.1016/j.steroids.2014.08.022.
[21]
张志良, 瞿伟菁. 植物生理学实验指导[M]. 3版. 北京: 高等教育出版社, 2003.
ZHANG Z L, QU W J. The experimental guide for plantphysiology[M]. 3rd ed. Beijing: Higher Education Press, 2003.
[22]
BEARDMORE T, CHAREST P J. Black spruce somatic embryo germination and desiccation tolerance.Ⅱ.effect of an abscisic acid treatment on protein synthesis[J]. Canadian Journal of Forest Research, 1995, 25(11):1773-1782.DOI: 10.1139/x95-192.
[23]
NISHIWAKI M, FUJINO K, KODA Y, et al. Somatic embryogenesis induced by the simple application of abscisic acid to carrot (Daucus carota L.) seedlings in culture[J]. Planta, 2000, 211(5):756-759.DOI: 10.1007/s004250000387.
[24]
刘小金, 徐大平, 杨曾奖, 等. 脱落酸对檀香幼苗生长、光合及叶片抗氧化酶活性的影响[J]. 南京林业大学学报(自然科学版), 2016, 40(3):57-62.
LIU X J, XU D P, YANG Z J, et al. Effects of abscisic acid on growth,photosynthesis and antioxidant enzyme activities of Santalum album seedlings[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40(3):57-62.DOI: 10.3969/j.issn.1000-2006.2016.03.010.
[25]
梁芬. 抗松材线虫病黑松体细胞胚胎发生及植株再生体系研究[D]. 南京: 南京林业大学, 2016.
LIANG F. Study on somatic embryogenesis and plant regeneration of nematode-resistant Pinus thunbergii[D]. Nanjing: Nanjing Forestry University, 2016.
[26]
闫会, 王欣, 李强, 等. ABA对甘薯体细胞胚分化及再生的影响[J]. 江苏农业科学, 2012, 40(8):58-59.
YAN H, WANG X, LI Q, et al. Effects of ABA on differentiation and regeneration of sweet potato somatic embryos[J]. Jiangsu Agricultural Sciences, 2012, 40(8):58-59.DOI: 10.15889/j.issn.1002-1302.2012.08.100.
[27]
霍妙娟, 魏岳荣, 胡家金, 等. 脱落酸在植物体细胞胚胎发生中的调控作用[J]. 中国生物工程杂志, 2007, 27(11):92-98.
HUO M J, WEI Y R, HU J J, et al. Regulatory role of abscisic acid in plant somatic embryogenesis[J]. China Biotechnology, 2007, 27(11):92-98.DOI: 10.13523/j.cb.20071119.
[28]
岳建华, 张梦帅, 董艳, 等. 低温预处理对百子莲体细胞胚胎诱导的影响及生理机制研究[J]. 河南农业科学, 2020, 49(8):116-123.
YUE J H, ZHANG M S, DONG Y, et al. Effects and physiological mechanisms of cold Pre-treatment on somatic embryo induction in Agapanthus praecox ssp.orientalis[J]. Journal of Henan Agricultural Sciences, 2020, 49(8):116-123.DOI: 10.15933/j.cnki.1004-3268.2020.08.014.
[29]
曲文颖, 刘真真, 谢琳淼, 等. 外源脱落酸和乙烯利对蓝莓重要品质的调控[J]. 江苏农业科学, 2017, 45(17):126-129.
QU W Y, LIU Z Z, XIE L M, et al. Regulation of exogenous ABA and ethephon on important quality of blueberries[J]. Jiangsu Agricultural Sciences, 2017, 45(17):126-129.DOI: 10.15889/j.issn.1002-1302.2017.17.034.
[30]
王慧纯, 韦虹宇, 刘金炽, 等. 连香树胚性与非胚性愈伤组织生理生化差异及同工酶分析[J]. 基因组学与应用生物学, 2018, 37(10):4449-4454.
WANG H C, WEI H Y, LIU J C, et al. Physiological and biochemical differences and isoenzymes analysis of embryogenic callus and non-embryogenic callus in Cercidiphyllum japonicum[J]. Genomics and Applied Biology, 2018, 37(10):4449-4454.DOI: 10.13417/j.gab.037.004449.
[31]
VONDRAKOVA Z, DOBREV P I, PESEK B, et al. Profiles of endogenous phytohormones over the course of Norway spruce somatic embryogenesis[J]. Frontiers in Plant Science, 2018,9:1283.DOI: 10.3389/fpls.2018.01283.
[32]
VALES T, FENG X R, GE L, et al. Improved somatic embryo maturation in loblolly pine by monitoring ABA-responsive gene expression[J]. Plant Cell Reports, 2007, 26(2):133-143.DOI: 10.1007/s00299-006-0221-7.
[33]
CHEN K, LI G J, BRESSAN R A, et al. Abscisic acid dynamics,signaling,and functions in plants[J]. Journal of Integrative Plant Biology, 2020, 62(1):25-54.DOI: 10.1111/jipb.12899.
[34]
SHINTANI M, TAMURA K, BONO H. Meta-analysis of public RNA sequencing data of abscisic acid-related abiotic stresses in Arabidopsis thaliana[J]. Frontiers in Plant Science, 2024,15:1343787.DOI: 10.3389/fpls.2024.1343787.
[35]
徐松华. 逆境条件下植物体内活性氧代谢研究进展[J]. 安徽农学通报, 2021, 27(21):29-32.
XU S H. Research advances of reactive oxygen species in plants under environmental stress[J]. Anhui Agricultural Science Bulletin, 2021, 27(21):29-32.DOI: 10.16377/j.cnki.issn1007-7731.2021.21.011.
[36]
徐文玲, 王翠花, 牟晋华, 等. 不同浓度脱落酸对大白菜抗冷特性的影响[J]. 山东农业科学, 2012, 44(1):47-50.
XU W L, WANG C H, MU J H, et al. Effects of different concentrations of ABA on chilling resistance of Chinese cabbage[J]. Shandong Agricultural Sciences, 2012, 44(1):47-50.DOI: 10.14083/j.issn.1001-4942.2012.01.036.
[37]
王浩. 外源抗坏血酸调控红松胚性细胞增殖的生理分析和关键基因筛选[D]. 哈尔滨: 东北林业大学, 2022.
WANG H. Physiological analysis and key gene screening of exogenous ascorbic acid regulating embryogenic cell proliferation of Pinus koraiensis[D].Harbin: Northeast Forestry University, 2022.DOI: 10.27009/d.cnki.gdblu.2022.001026.
[38]
王政, 杨大娟, 何松林, 等. 不同处理对牡丹体细胞胚发生早期生理生化的影响[J]. 河南农业科学, 2018, 47(3):105-111.
WANG Z, YANG D J, HE S L, et al. Effects of different treatments on physiological biochemical properties of early somatic embryogenesis of Paeonia suffruticosa Andr[J]. Journal of Henan Agricultural Sciences, 2018, 47(3):105-111.DOI: 10.15933/j.cnki.1004-3268.2018.03.021.
[39]
dos SANTOS ARAÚJO G, de OLIVEIRA PAULA-MARINHO S, de PAIVA PINHEIRO S K, et al. H2O2 priming promotes salt tolerance in maize by protecting chloroplasts ultrastructure and primary metabolites modulation[J]. Plant Science, 2021,303:110774.DOI: 10.1016/j.plantsci.2020.110774.
[40]
ZHU J J, ZHANG K K, XIONG H R, et al. H2O2 significantly affects Larix kaempferi × Larix olgensis somatic embryogenesis[J]. International Journal of Molecular Sciences, 2024, 25(1):669.DOI: 10.3390/ijms25010669.

基金

国家重点研发计划(2023YFD2200103)

编辑: 吴祝华
PDF(15168 KB)

Accesses

Citation

Detail

段落导航
相关文章

/