国际森林空间分析技术会议(ForestSAT 2024)学术动向分析

侯正阳, 黄华国

南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (6) : 1-4.

PDF(1539 KB)
PDF(1539 KB)
南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (6) : 1-4. DOI: 10.12302/j.issn.1000-2006.202410001
林学前沿

国际森林空间分析技术会议(ForestSAT 2024)学术动向分析

作者信息 +

Emerging academic trends at the ForestSAT 2024 Conference

Author information +
文章历史 +

摘要

森林空间分析技术会议(ForestSAT)是国际林业遥感领域的一大学术盛事,已成为该领域的学术风向标。ForestSAT 2024于9月9—13日在新西兰罗托鲁瓦举行,吸引了来自超过40个国家的学者,共同探讨38个议题,包括统计遥感、森林清查、森林生态、遥感算法、遥感产品及未来展望。此次会议呈现5大特点:首先,统计遥感备受关注;其次,遥感技术的应用需求旺盛,服务于森林生态和清查;第三,强调数据融合,充分利用多源多模态数据优势;第四,遥感产品为全球“双碳”战略提供支持;最后,把脉林业遥感未来发展路径。会议期间举行了两场主旨报告并深入讨论无人机遥感、尺度上升、小域估计及误差传播等前沿问题。统计遥感作为抽样调查、统计模型与遥感技术的融合,是突破林业遥感瓶颈的重要手段,展现了林业遥感的新发展趋势。

Abstract

The Forest Spatial Analysis Technology (ForestSAT) Conference is a pivotal assembly in the global domain of forestry remote sensing, functioning as a vital gauge for advancements in this area of research. The ForestSAT 2024 was convented from September 9 to 13 in Rotorua, New Zealand, drawing academics from more than 40 nations to deliberate on 38 subjects, including statistical remote sensing, forest inventory, forest ecology, remote sensing algorithms, remote sensing products, and future trends. The conference underscored five significant aspects: firstly, the prominence of statistical remote sensing; secondly, the robust demand for remote sensing applications within forest ecology and inventory; thirdly, the accentuation on data fusion to capitalize on the strengths of multi-source and multi-modal data; fourthly, the vital support that remote sensing products contribute to the global “double carbon” strategy; lastly, the inquiry into future developmental trajectories for forestry remote sensing. During the event, two keynote speeches were presented, with additional avant-garde topics such as UAV remote sensing, upscaling, small-domain estimation, and error propagation. As an integration of sampling surveys, statistical models, and remote sensing technology, statistical remote sensing is instrumental in addressing the challenges of forestry remote sensing, elucidating the emerging developmental directions in this discipline.

关键词

ForestSAT / 统计遥感 / 尺度上升 / 小域估计 / 误差传播

Key words

ForestSAT / statistical remote sensing / upscaling / small-area estimation / error propagation

引用本文

导出引用
侯正阳, 黄华国. 国际森林空间分析技术会议(ForestSAT 2024)学术动向分析[J]. 南京林业大学学报(自然科学版). 2024, 48(6): 1-4 https://doi.org/10.12302/j.issn.1000-2006.202410001
HOU Zhengyang, HUANG Huaguo. Emerging academic trends at the ForestSAT 2024 Conference[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(6): 1-4 https://doi.org/10.12302/j.issn.1000-2006.202410001
中图分类号: S757   

参考文献

[1]
MCROBERTS R E, COHEN W B, PFLUGMACHER D. Preface, 2012 ForestSAT special issue[J]. Remote Sens Environ, 2014, 151:1-2.DOI: 10.1016/j.rse.2014.02.010.
[2]
PFLUGMACHER D, MCROBERTS R E, MORSDORF F. Preface:ForestSAT 2014 special issue[J]. Remote Sens Environ, 2016, 173:211-213.DOI: 10.1016/j.rse.2015.11.025.
[3]
LIU Y, WANG Z S, SUN Q S, et al. Evaluation of the VIIRS BRDF,Albedo and NBAR products suite and an assessment of continuity with the long term MODIS record[J]. Remote Sens Environ, 2017, 201:256-274.DOI: 10.1016/j.rse.2017.09.020.
[4]
CAMPAGNOLO M L, SUN Q S, LIU Y, et al. Estimating the effective spatial resolution of the operational BRDF,albedo,and nadir reflectance products from MODIS and VIIRS[J]. Remote Sens Environ, 2016, 175:52-64.DOI: 10.1016/j.rse.2015.12.033.
[5]
MOHAMMED G H, COLOMBO R, MIDDLETON E M, et al. Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation:50-years of progress[J]. Remote Sens Environ, 2019,231:111177.DOI: 10.1016/j.rse.2019.04.030.
[6]
SUOMALAINEN J, OLIVEIRA R A, HAKALA T, et al. Direct reflectance transformation methodology for drone-based hyperspectral imaging[J]. Remote Sens Environ, 2021,266:112691.DOI: 10.1016/j.rse.2021.112691.
[7]
ZHENG Y, HOU Z Y, STÅHL G, et al. Nexus of certain model-based estimators in remote sensing forest inventory[J]. For Ecosyst, 2024,11:100245.DOI: 10.1016/j.fecs.2024.100245.
[8]
STÅHL G, SAARELA S, SCHNELL S, et al. Use of models in large-area forest surveys:comparing model-assisted,model-based and hybrid estimation[J]. For Ecosyst, 2016, 3(1):5.DOI: 10.1186/s40663-016-0064-9.
[9]
HOU Z Y, DOMKE G M, RUSSELL M B, et al. Updating annual state- and county-level forest inventory estimates with data assimilation and FIA data[J]. For Ecol Manag, 2021,483:118777.DOI: 10.1016/j.foreco.2020.118777.
[10]
GOERNDT M E, MONLEON V J, TEMESGEN H. Small-area estimation of county-level forest attributes using ground data and remote sensed auxiliary information[J]. For Sci, 2013, 59(5):536-548.DOI: 10.5849/forsci.12-073.
[11]
HOU Z Y, MCROBERTS R E, ZHANG C Y, et al. Cross-classes domain inference with network sampling for natural resource inventory[J]. For Ecosyst, 2022,9:100029.DOI: 10.1016/j.fecs.2022.100029.
[12]
STÅHL G, GOBAKKEN T, SAARELA S, et al. Why ecosystem characteristics predicted from remotely sensed data are unbiased and biased at the same time-and how this affects applications[J]. For Ecosyst, 2024,11:100164.DOI: 10.1016/j.fecs.2023.100164.
[13]
HOU Z Y, YUAN K Y, STÅHL G, et al. Conjugating remotely sensed data assimilation and model-assisted estimation for efficient multivariate forest inventory[J]. Remote Sens Environ, 2023,299:113854.DOI: 10.1016/j.rse.2023.113854.
[14]
CHEN F T, HOU Z Y, SAARELA S, et al. Leveraging remotely sensed non-wall-to-wall data for wall-to-wall upscaling in forest inventory[J]. Int J Appl Earth Obs Geoinf, 2023,119:103314.DOI: 10.1016/j.jag.2023.103314.
[15]
SAARELA S, HOLM S, HEALEY S P, et al. Comparing frameworks for biomass prediction for the Global Ecosystem Dynamics Investigation[J]. Remote Sens Environ, 2022,278:113074.DOI: 10.1016/j.rse.2022.113074.
[16]
DUNCANSON L, KELLNER J R, ARMSTON J, et al. Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) lidar mission[J]. Remote Sens Environ, 2022, 270: 112845.

基金

国家重点研发计划(2023YFF1304002-05)
国家社会科学基金项目(22BTJ005)(统计学部)

编辑: 吴祝华
PDF(1539 KB)

Accesses

Citation

Detail

段落导航
相关文章

/