外来植物入侵的主要入侵假说及研究进展

黄薇, 张敏, 毛岭峰

南京林业大学学报(自然科学版) ›› 2026, Vol. 50 ›› Issue (1) : 284-294.

PDF(3026 KB)
PDF(3026 KB)
南京林业大学学报(自然科学版) ›› 2026, Vol. 50 ›› Issue (1) : 284-294. DOI: 10.12302/j.issn.1000-2006.202410024
综合述评

外来植物入侵的主要入侵假说及研究进展

作者信息 +

The main hypotheses of alien plant invasion and recent research advances

Author information +
文章历史 +

摘要

随着全球经济的高速发展、陆地和海洋利用方式的变化加剧以及人口流动的增加,全球范围内外来入侵植物种的数量持续增加,其引发的生态、经济和人类健康问题也日益严峻。阐明外来植物成功入侵的驱动因素,对于防控外来植物入侵以及治理受入侵生态系统具有重要意义。近年来,一系列关于外来入侵物种入侵机理的假说被陆续提出,主要包括新武器假说、共生促进假说等。笔者基于现有植物入侵理论,梳理了达尔文归化谜团(Darwin’s Naturalization Conundrum)的理论内涵及其研究进展,并从外来植物的入侵特性、入侵植物与生物间的相互作用、本地生境的可入侵性,以及多因素协同作用对植物入侵的影响4个方面进行了综述。最后,在总结当前外来植物入侵研究的基础上,提出了未来应重点加强的方向,即:需更深入地开展多因素协同作用机制研究,推动多学科交叉与技术融合并拓展多尺度动态研究,以全面理解和完善外来植物入侵的复杂机制。

Abstract

With rapid global economic development, intensified changes in land and ocean use, and increased population mobility, the number of invasive alien species (IAS) continues to rise worldwide, posing increasingly severe threats to ecology, economies, and human health. Elucidating the drivers of successful alien plant invasions is essential for preventing and controll plant invasions and for restoring affected ecosystems. In recent years, several hypotheses regarding the mechanisms of IAS invasions have been proposed, including the Novel Weapons Hypothesis and the Mutualism Facilitation Hypothesis. Building upon established theories of plant invasion, this review synthesizes the conceptual foundations and research advancements related to Darwin’s Naturalization Conundrum. It systematically examines four key aspects of plant invasion, including the functional traits of alien plants, their interactions with native biota, the invasibility of local habitats, and the synergistic effects of multiple factors on invasion success. Finally, by identifying current limitations in alien plant invasion research, the review proposes critical future directions: conducting more in-depth investigations into the synergistic interactions among multiple drivers; promoting interdisciplinary integration and technological convergence; and expanding multi-scale dynamic studies. These approaches are vital for achieving a comprehensive understanding and refining the complex mechanisms underlying alien plant invasions.

关键词

植物入侵假说 / 入侵性 / 协同作用 / 入侵机理 / 达尔文归化谜团

Key words

plant invasion hypothesis / invasive / synergy / invasion mechanism / the Darwin’s Naturalization Conundrum

引用本文

导出引用
黄薇, 张敏, 毛岭峰. 外来植物入侵的主要入侵假说及研究进展[J]. 南京林业大学学报(自然科学版). 2026, 50(1): 284-294 https://doi.org/10.12302/j.issn.1000-2006.202410024
HUANG Wei, ZHANG Min, MAO Lingfeng. The main hypotheses of alien plant invasion and recent research advances[J]. Journal of Nanjing Forestry University (Natural Sciences Edition). 2026, 50(1): 284-294 https://doi.org/10.12302/j.issn.1000-2006.202410024
中图分类号: S718   

参考文献

[1]
DIAGNE C, LEROY B, VAISSIÈRE A, et al. High and rising economic costs of biological invasions worldwide[J]. Nature, 2021, 592(7855): 571-576. DOI: 10.1038/s41586-021-03405-6.
[2]
RICHARDSON D, PYŠEK P, REJMÁNEK M, et al. Naturalization and invasion of alien plants: concepts and definitions[J]. Diversity and Distributions, 2000, 6(2): 93-107. DOI: 10.1046/j.1472-4642.2000.00083.x.
[3]
BACHER S, BLACKBURN T M, ESSL F, et al. Socio-economic impact classification of alien taxa (SEICAT)[J]. Methods in Ecology and Evolution, 2018, 9(1): 159-168. DOI: 10.1111/2041-210X.12844.
[4]
CASTRO-DÍEZ P, VAZ A S, SILVA J S, et al. Global effects of non-native tree species on multiple ecosystem services[J]. Biological Reviews, 2019, 94(4): 1477-1501. DOI: 10.1111/brv.12511.
[5]
KUMAR RAI P, SINGH J S. Invasive alien plant species: their impact on environment, ecosystem services and human health[J]. Ecological Indicators, 2020, 111: 106020. DOI: 10.1016/j.ecolind.2019.106020.
[6]
RICHARDSON D, PYŠEK P. Fifty years of invasion ecology-the legacy of Charles Elton[J]. Diversity and Distributions, 2008, 14(2): 161-168. DOI: 10.1111/j.1472-4642.2007.00464.x.
[7]
REJMÁNEK M. A theory of seed plant invasiveness: the first sketch[J]. Biological Conservation, 1996, 78(1/2): 171-181. DOI: 10.1016/0006-3207(96)00026-2.
[8]
GIORIA M, HULME P E, RICHARDSON D M, et al. Why are invasive plants successful?[J]. Annual Review of Plant Biology, 2023, 74: 635-670. DOI: 10.1146/annurev-arplant-070522-071021.
[9]
DIEZ J M, SULLIVAN J J, HULME P E, et al. Darwin’s Naturalization Conundrum: dissecting taxonomic patterns of species invasions[J]. Ecology Letters, 2008, 11(7): 674-681. DOI: 10.1111/j.1461-0248.2008.01178.x.
[10]
黎绍鹏, 范舒雅, 孟亚妮, 等. 外来生物入侵中的达尔文归化谜团[J]. 中国科学:生命科学, 2024, 54(4): 723-738.
LI S P, FAN S Y, MENG Y N, et al. Darwin’s Naturalization Conundrum:an unsolved paradox in invasion ecology[J]. Scientia Sinica (Vitae), 2024, 54(4):723-738. DOI: 10.1360/SSV-2023-0136.
[11]
DARWIN C. On the origin of species[M]. London: The Times, 1859.
[12]
SOL D, GARCIA-PORTA J, GONZÁLEZ-LAGOS C, et al. A test of Darwin’s Naturalization Conundrum in birds reveals enhanced invasion success in the presence of close relatives[J]. Ecology Letters, 2022, 25(3): 661-672. DOI: 10.1111/ele.13899.
[13]
DIEZ J, WILLIAMS P, RANDALL R, et al. Learning from failures: testing broad taxonomic hypotheses about plant naturalization[J]. Ecology Letters, 2009, 12(11): 1174-1183. DOI: 10.1111/j.1461-0248.2009.01376.x.
[14]
STRAUSS S Y, WEBB C O, SALAMIN N. Exotic taxa less related to native species are more invasive[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(15): 5841-5845. DOI: 10.1073/pnas.0508073103.
[15]
SCHAEFER H, HARDY O J, SILVA L, et al. Testing Darwin’s Naturalization Hypothesis in the Azores[J]. Ecology Letters, 2011, 14(4): 389-396. DOI: 10.1111/j.1461-0248.2011.01600.x.
[16]
MCGRANNACHAN C M, HORNER G J, MCGEOCH M A. Scale dependence in the phylogenetic relatedness of alien and native taxa[J]. Journal of Plant Ecology, 2020, 13(5): 601-610. DOI: 10.1093/jpe/rtaa048.
[17]
PROCHEŞ Ş, WILSON J R U, RICHARDSON D M, et al. Searching for phylogenetic pattern in biological invasions[J]. Global Ecology and Biogeography, 2008, 17(1): 5-10. DOI: 10.1111/j.1466-8238.2007.00333.x.
[18]
ROCHA B S, CIANCIARUSO M V. Water temperature and lake size explain Darwin’s Conundrum for fish establishment in boreal lakes[J]. Hydrobiologia, 2021, 848(9): 2033-2042. DOI: 10.1007/s10750-020-04434-4.
[19]
FAN S Y, YANG Q, LI S P, et al. A latitudinal gradient in Darwin’s Naturalization Conundrum at the global scale for flowering plants[J]. Nature Communications, 2023, 14: 6244. DOI: 10.1038/s41467-023-41607-w.
[20]
ELTON C S. The ecology of invasions by animals and plants[M]. Boston MA: Springer US, 1958.
[21]
BAKER H G, STEBBINS G. The genetics of colonizing species:proceedings of the first international union of biological sciences symposia on general biology[M]. New York: Academic Press, 1965.
[22]
BLOSSEY B. Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis[J]. Journal of Ecology, 1995, 83(5): 887-889. DOI: 10.2307/2261425.
[23]
FENG Y L, LEI Y B, WANG R F, et al. Evolutionary tradeoffs for nitrogen allocation to photosynthesis versus cell walls in an invasive plant[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(6): 1853-1856. DOI: 10.2307/40421686.
[24]
KEANE R M, CRAWLEY M J. Exotic plant invasions and the enemy release hypothesis[J]. Trends in Ecology & Evolution, 2002, 17(4): 164-170. DOI: 10.1016/S0169-5347(02)02499-0.
[25]
CALLAWAY R M, RIDENOUR W M. Novel weapons: invasive success and the evolution of increased competitive ability[J]. Frontiers in Ecology and the Environment, 2004, 2(8): 436-443. DOI: 10.1890/1540-9295(2004)002[0436:NWISAT]2.0.CO;2.
[26]
JOSHI J, VRIELING K. The enemy release and EICA hypothesis revisited: incorporating the fundamental difference between specialist and generalist herbivores[J]. Ecology Letters, 2005, 8(7): 704-714. DOI: 10.1111/j.1461-0248.2005.00769.x.
[27]
EPPINGA M B, RIETKERK M, DEKKER S C, et al. Accumulation of local pathogens: a new hypothesis to explain exotic plant invasions[J]. Oikos, 2006, 114(1): 168-176. DOI: 10.1111/j.2006.0030-1299.14625.x.
[28]
REINHART K O, CALLAWAY R M. Soil biota and invasive plants[J]. New Phytologist, 2006, 170(3): 445-457. DOI: 10.1111/j.1469-8137.2006.01715.x.
[29]
CUMMINGS J A, PARKER I M, GILBERT G S. Allelopathy: a tool for weed management in forest restoration[J]. Plant Ecology, 2012, 213(12): 1975-1989. DOI: 10.1007/s11258-012-0154-x.
[30]
HOBBS R J, HUENNEKE L F. Disturbance,diversity,and invasion:implications for conservation[M]. New York: Springer, 1996.
[31]
DAVIS M A, GRIME J P, THOMPSON K. Fluctuating resources in plant communities: a general theory of invasibility[J]. Journal of Ecology, 2000, 88(3): 528-534. DOI: 10.1046/j.1365-2745.2000.00473.x.
[32]
ZHANG Z J, LIU Y J, YUAN L, et al. Effect of allelopathy on plant performance: a meta-analysis[J]. Ecology Letters, 2021, 24(2): 348-362. DOI: 10.1111/ele.13627.
[33]
VAN KLEUNEN M, Richardson D M. Invasion biology and conservation biology: time to join forces to explore the links between species traits and extinction risk and invasiveness[J]. Progress in Physical Geography: Earth and Environment, 2007, 31(4): 447-450. DOI: 10.1177/0309133307081295.
[34]
VALLIERE J M, ESCOBEDO E B, BUCCIARELLI G M, et al. Invasive annuals respond more negatively to drought than native species[J]. New Phytologist, 2019, 223(3): 1647-1656. DOI: 10.1111/nph.15865.
[35]
ENS E, HUTLEY L B, ROSSITER-RACHOR N A, et al. Resource-use efficiency explains grassy weed invasion in a low-resource savanna in north Australia[J]. Frontiers in Plant Science, 2015, 6: 560. DOI: 10.3389/fpls.2015.00560.
[36]
VAN KLEUNEN M, WEBER E, FISCHER M. A meta-analysis of trait differences between invasive and non-invasive plant species[J]. Ecology Letters, 2010, 13(2): 235-245. DOI: 10.1111/j.1461-0248.2009.01418.x.
[37]
CHEN Y C, XIE Y J, WEI C H, et al. Invasive plant species demonstrate enhanced resource acquisition traits relative to native non-dominant species but not compared with native dominant species[J]. Diversity, 2024, 16(6): 317. DOI: 10.3390/d16060317.
[38]
HUFBAUER R A, FACON B, RAVIGNÉ V, et al. Anthropogenically induced adaptation to invade (AIAI): contemporary adaptation to human-altered habitats within the native range can promote invasions[J]. Evolutionary Applications, 2012, 5(1): 89-101. DOI: 10.1111/j.1752-4571.2011.00211.x.
[39]
BLAIR A C, WOLFE L M. The evolution of an invasive plant: an experimental study with Silene latifolia[J]. Ecology, 2004, 85(11): 3035-3042. DOI: 10.1890/04-0341.
[40]
HUANG W, CARRILLO J, DING J Q, et al. Invader partitions ecological and evolutionary responses to above- and belowground herbivory[J]. Ecology, 2012, 93(11): 2343-2352. DOI: 10.1890/11-1964.1.
[41]
BOSSDORF O, PRATI D, AUGE H, et al. Reduced competitive ability in an invasive plant[J]. Ecology Letters, 2004, 7(4): 346-353. DOI: 10.1111/j.1461-0248.2004.00583.x.
[42]
PAN X Y, JIA X, CHEN J K, et al. For or against: the importance of variation in growth rate for testing the EICA hypothesis[J]. Biological Invasions, 2012, 14(1): 1-8. DOI: 10.1007/s10530-011-9941-x.
[43]
ZHENG Y L, FENG Y L, VALIENTE-BANUET A, et al. Are invasive plants more competitive than native conspecifics?Patterns vary with competitors[J]. Scientific Reports, 2015, 5: 15622. DOI: 10.1038/srep15622.
[44]
QING H, CAI Y, XIAO Y, et al. Leaf nitrogen partition between photosynthesis and structural defense in invasive and native tall form Spartina alterniflora populations: effects of nitrogen treatments[J]. Biological Invasions, 2012, 14(10): 2039-2048. DOI: 10.1007/s10530-012-0210-4.
[45]
HE L P, KONG J J, LI G X, et al. Similar responses in morphology, growth, biomass allocation, and photosynthesis in invasive Wedelia trilobata and native congeners to CO2 enrichment[J]. Plant Ecology, 2018, 219(2): 145-157. DOI: 10.1007/s11258-017-0784-0.
[46]
MOLISCH H. Der einfluss einer pflanze auf die andere, allelopathie[J]. Nature, 1938, 141(3568): 493. DOI: 10.1038/141493a0.
[47]
KALISZ S, KIVLIN S N, BIALIC-MURPHY L. Allelopathy is pervasive in invasive plants[J]. Biological Invasions, 2021, 23(2): 367-371. DOI: 10.1007/s10530-020-02383-6.
[48]
KIM Y O, LEE E J. Comparison of phenolic compounds and the effects of invasive and native species in east Asia: support for the novel weapons hypothesis[J]. Ecological Research, 2011, 26(1): 87-94. DOI: 10.1007/s11284-010-0762-7.
[49]
AFZAL M R, NAZ M, ULLAH R, et al. Persistence of root exudates of sorghum bicolor and Solidago canadensis:impacts on invasive and native species[J]. Plants, 2024, 13(1): 58. DOI: 10.3390/plants13010058.
[50]
HALE A N, KALISZ S. Perspectives on allelopathic disruption of plant mutualisms: a framework for individual-and population-level fitness consequences[J]. Plant Ecology, 2012, 213(12): 1991-2006. DOI: 10.1007/s11258-012-0128-z.
[51]
ZHANG P, LI B, WU J H, et al. Invasive plants differentially affect soil biota through litter and rhizosphere pathways: a meta-analysis[J]. Ecology Letters, 2019, 22(1): 200-210. DOI: 10.1111/ele.13181.
[52]
CIPOLLINI D, RIGSBY C M, BARTO E K. Microbes as targets and mediators of allelopathy in plants[J]. Journal of Chemical Ecology, 2012, 38(6): 714-727. DOI: 10.1007/s10886-012-0133-7.
[53]
PINZONE P, POTTS D, PETTIBONE G, et al. Do novel weapons that degrade mycorrhizal mutualisms promote species invasion?[J]. Plant Ecology, 2018, 219(5): 539-548. DOI: 10.1007/s11258-018-0816-4.
[54]
WU A P, YU H, GAO S Q, et al. Differential belowground allelopathic effects of leaf and root of Mikania micrantha[J]. Trees, 2009, 23(1): 11-17. DOI: 10.1007/s00468-008-0249-0.
[55]
SVENSSON J R, NYLUND G M, CERVIN G, et al. Novel chemical weapon of an exotic macroalga inhibits recruitment of native competitors in the invaded range[J]. Journal of Ecology, 2013, 101(1): 140-148. DOI: 10.1111/1365-2745.12028.
[56]
YUAN Y G, WANG B, ZHANG S S, et al. Enhanced allelopathy and competitive ability of invasive plant Solidago canadensis in its introduced range[J]. Journal of Plant Ecology, 2013, 6(3): 253-263. DOI: 10.1093/jpe/rts033.
[57]
HOU Y P, PENG S L, NI G Y, et al. Inhibition of invasive specie Mikania micrantha HBK by native dominant trees in China[J]. Allelopathy Journal, 2012, 29(2): 307-314. DOI: 10.1016/j.biocon.2008.08.002.
[58]
NING L, YU F H, VAN KLEUNEN M. Allelopathy of a native grassland community as a potential mechanism of resistance against invasion by introduced plants[J]. Biological Invasions, 2016, 18(12): 3481-3493. DOI: 10.1007/s10530-016-1239-6.
[59]
WEIDENHAMER J D, ROMEO J T. Allelopathy as a mechanism for resisting invasion: the case of Polygonella myriophylla[M]. Basel: Birkhäuser-Verlag, 2005: 167-177.
[60]
CHENG J K, CAO M Y, YANG H R, et al. Interactive effects of allelopathy and arbuscular mycorrhizal fungi on the competition between the invasive species Bidens alba and its native congener Bidens biternata[J]. Weed Research, 2022, 62(4): 268-276. DOI: 10.1111/wre.12534.
[61]
BLAIR A C, NISSEN S J, BRUNK G R, et al. A lack of evidence for an ecological role of the putative allelochemical (+/-)-catechin in spotted knapweed invasion success[J]. Journal of Chemical Ecology, 2006, 32(10): 2327-2331. DOI: 10.1007/s10886-006-9168-y.
[62]
INDERJIT, EVANS H, CROCOLL C, et al. Volatile chemicals from leaf litter are associated with invasiveness of a Neotropical weed in Asia[J]. Ecology, 2011, 92(2): 316-324. DOI: 10.1890/10-0400.1.
[63]
YANNELLI F A, NOVOA A, LORENZO P, et al. No evidence for novel weapons: biochemical recognition modulates early ontogenetic processes in native species and invasive acacias[J]. Biological Invasions, 2020, 22(2): 549-562. DOI: 10.1007/s10530-019-02110-w.
[64]
GRUNTMAN M, ZIEGER S, TIELBÖRGER K. Invasive success and the evolution of enhanced weaponry[J]. Oikos, 2016, 125(1): 59-65. DOI: 10.1111/oik.02109.
[65]
WOLFE L M. Why alien invaders succeed: support for the escape-from-enemy hypothesis[J]. The American Naturalist, 2002, 160(6): 705-711. DOI: 10.1086/343872.
[66]
CARPENTER D, CAPPUCCINO N. Herbivory, time since introduction and the invasiveness of exotic plants[J]. Journal of Ecology, 2005, 93(2): 315-321. DOI: 10.1111/j.1365-2745.2005.00973.x.
[67]
VASQUEZ E C, MEYER G A. Relationships among leaf damage, natural enemy release, and abundance in exotic and native prairie plants[J]. Biological Invasions, 2011, 13(3): 621-633. DOI: 10.1007/s10530-010-9853-1.
[68]
LIU H, STILING P, PEMBERTON R W. Does enemy release matter for invasive plants?evidence from a comparison of insect herbivore damage among invasive, non-invasive and native congeners[J]. Biological Invasions, 2007, 9(7): 773-781. DOI: 10.1007/s10530-006-9074-9.
[69]
BRIAN J I, CATFORD J A. A mechanistic framework of enemy release[J]. Ecology Letters, 2023, 26(12): 2147-2166. DOI: 10.1111/ele.14329.
[70]
HINZ H L, WINSTON R L, SCHWARZLÄNDER M. How safe is weed biological control?a global review of direct nontarget attack[J]. The Quarterly Review of Biology, 2019, 94(1): 1-27. DOI: 10.1086/702340.
[71]
ZHANG Z J, PAN X Y, BLUMENTHAL D, et al. Contrasting effects of specialist and generalist herbivores on resistance evolution in invasive plants[J]. Ecology, 2018, 99(4): 866-875. DOI: 10.1002/ecy.2155.
[72]
WAN J L, HUANG B, YU H, et al. Reassociation of an invasive plant with its specialist herbivore provides a test of the shifting defence hypothesis[J]. Journal of Ecology, 2019, 107(1): 361-371. DOI: 10.1111/1365-2745.13019.
[73]
WOLFE B E, KLIRONOMOS J N. Breaking new ground: soil communities and exotic plant invasion[J]. BioScience, 2005, 55(6): 477-487. DOI: 10.1641/0006-3568(2005)055[0477:BNGSCA]2.0.CO;2.
[74]
VAN DER PUTTEN W H, KLIRONOMOS J N, WARDLE D A. Microbial ecology of biological invasions[J]. The ISME Journal, 2007, 1(1): 28-37. DOI: 10.1038/ismej.2007.9.
[75]
CALLAWAY R M, THELEN G C, RODRIGUEZ A, et al. Soil biota and exotic plant invasion[J]. Nature, 2004, 427(6976): 731-733. DOI: 10.1038/nature02322.
[76]
RODRÍGUEZ-CABALLERO G, CARAVACA F, ALGUACIL M M, et al. Striking alterations in the soil bacterial community structure and functioning of the biological N cycle induced by Pennisetum setaceum invasion in a semiarid environment[J]. Soil Biology and Biochemistry, 2017, 109: 176-187. DOI: 10.1016/j.soilbio.2017.02.012.
[77]
RODRÍGUEZ-CABALLERO G, CARAVACA F, DÍAZ G, et al. The invader Carpobrotus edulis promotes a specific rhizosphere microbiome across globally distributed coastal ecosystems[J]. Science of the Total Environment, 2020, 719: 137347. DOI: 10.1016/j.scitotenv.2020.137347.
[78]
SMITH S E, READ D J. Mycorrhizal symbiosis[M]. 2nd ed. New York: Academic Press, 1997:605.
[79]
TIAN B L, PEI Y C, HUANG W, et al. Increasing flavonoid concentrations in root exudates enhance associations between arbuscular mycorrhizal fungi and an invasive plant[J]. The ISME Journal, 2021, 15(7): 1919-1930. DOI: 10.1038/s41396-021-00894-1.
[80]
YU H W, HE W M. Arbuscular mycorrhizal fungi compete asymmetrically for amino acids with native and invasive Solidago[J]. Microbial Ecology, 2022, 84(1): 131-140. DOI: 10.1007/s00248-021-01841-5.
[81]
MENZEL A, HEMPEL S, KLOTZ S, et al. Mycorrhizal status helps explain invasion success of alien plant species[J]. Ecology, 2017, 98(1): 92-102. DOI: 10.1002/ecy.1621.
[82]
AWAYDUL A, ZHU W Y, YUAN Y G, et al. Common mycorrhizal networks influence the distribution of mineral nutrients between an invasive plant,Solidago canadensis, and a native plant, Kummerowa Striata[J]. Mycorrhiza, 2019, 29(1): 29-38. DOI: 10.1007/s00572-018-0873-5.
[83]
YU H W, HE Y Y, ZHANG W, et al. Greater chemical signaling in root exudates enhances soil mutualistic associations in invasive plants compared to natives[J]. New Phytologist, 2022, 236(3): 1140-1153. DOI: 10.1111/nph.18289.
[84]
KLIRONOMOS J N. Feedback with soil biota contributes to plant rarity and invasiveness in communities[J]. Nature, 2002, 417(6884): 67-70. DOI: 10.1038/417067a.
[85]
LEVINE J M, ADLER P B, YELENIK S G. A meta-analysis of biotic resistance to exotic plant invasions[J]. Ecology Letters, 2004, 7(10): 975-989. DOI: 10.1111/j.1461-0248.2004.00657.x.
[86]
CUSHMAN J H, LORTIE C J, CHRISTIAN C E. Native herbivores and plant facilitation mediate the performance and distribution of an invasive exotic grass[J]. Journal of Ecology, 2011, 99(2): 524-531. DOI: 10.1111/j.1365-2745.2010.01776.x.
[87]
BEAURY E M, FINN J T, CORBIN J D, et al. Biotic resistance to invasion is ubiquitous across ecosystems of the United States[J]. Ecology Letters, 2020, 23(3): 476-482. DOI: 10.1111/ele.13446.
[88]
LI S P, JIA P, FAN S Y, et al. Functional traits explain the consistent resistance of biodiversity to plant invasion under nitrogen enrichment[J]. Ecology Letters, 2022, 25(4): 778-789. DOI: 10.1111/ele.13951.
[89]
ZHANG Z J, LIU Y J, BRUNEL C, et al. Evidence for Elton’s diversity-invasibility hypothesis from belowground[J]. Ecology, 2020, 101(12): e03187. DOI: 10.1002/ecy.3187.
[90]
GUO K, PYŠEK P, CHYTRY M, et al. Stage dependence of Elton’s biotic resistance hypothesis of biological invasions[J]. Nature Plants, 2024, 10(10): 1484-1492. DOI: 10.1038/s41477-024-01790-0.
[91]
RADFORD I J. Fluctuating resources, disturbance and plant strategies: diverse mechanisms underlying plant invasions[J]. Journal of Arid Land, 2013, 5(3): 284-297. DOI: 10.1007/s40333-013-0164-0.
[92]
LIU Y J, ZHANG X Q, VAN KLEUNEN M. Increases and fluctuations in nutrient availability do not promote dominance of alien plants in synthetic communities of common natives[J]. Functional Ecology, 2018, 32(11): 2594-2604. DOI: 10.1111/1365-2435.13199.
[93]
TAO Z B, SHEN C C, QIN W C, et al. Fluctuations in resource availability shape the competitive balance among non-native plant species[J]. Ecological Applications, 2024, 34(1): e2795. DOI: 10.1002/eap.2795.
[94]
SHEA K, ROXBURGH S H, RAUSCHERT E S J. Moving from pattern to process: coexistence mechanisms under intermediate disturbance regimes[J]. Ecology Letters, 2004, 7(6): 491-508. DOI: 10.1111/j.1461-0248.2004.00600.x.
[95]
LINDENMAYER D, MCCARTHY M A. Congruence between natural and human forest disturbance: a case study from Australian montane ash forests[J]. Forest Ecology and Management, 2002, 155(1/2/3): 319-335. DOI: 10.1016/S0378-1127(01)00569-2.
[96]
PORENSKY L M, MCGEE R, PELLATZ D W. Long-term grazing removal increased invasion and reduced native plant abundance and diversity in a sagebrush grassland[J]. Global Ecology and Conservation, 2020, 24: e01267. DOI: 10.1016/j.gecco.2020.e01267.
[97]
DRISCOLL A G. The effect of treefall gaps on the spatial distribution of three invasive plants in a mature upland forest in Maryland1,[J]. Journal of the Torrey Botanical Society, 2016.DOI:10.3159/TORREY-D-15-00022.1.
[98]
BLUMENTHAL D M. Interactions between resource availability and enemy release in plant invasion[J]. Ecology Letters, 2006, 9(7): 887-895. DOI: 10.1111/j.1461-0248.2006.00934.x.
[99]
ZHENG Y L, FENG Y L, ZHANG L K, et al. Integrating novel chemical weapons and evolutionarily increased competitive ability in success of a tropical invader[J]. New Phytologist, 2015, 205(3): 1350-1359. DOI: 10.1111/nph.13135.
[100]
SUN X, SUN Y M, CAO X Y, et al. Trade-offs in non-native plant herbivore defences enhance performance[J]. Ecology Letters, 2023, 26(9): 1584-1596. DOI: 10.1111/ele.14283.

基金

国家重点研发计划(2023YFF0805803)

责任编辑: 郑琰燚
PDF(3026 KB)

Accesses

Citation

Detail

段落导航
相关文章

/