银杏无性系木材密度、主要化学成分和管胞形态的研究及综合评价

李雄杰, 高钿惠, 巢锦一, 王叶乔, 涂颢川, 郑婧婧, 汪贵斌, 余鹏飞

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (6) : 171-180.

PDF(1829 KB)
PDF(1829 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (6) : 171-180. DOI: 10.12302/j.issn.1000-2006.202410027
研究论文

银杏无性系木材密度、主要化学成分和管胞形态的研究及综合评价

作者信息 +

Study and comprehensive evaluation on wood density, main chemical components and tracheid morphology of Ginkgo biloba clones

Author information +
文章历史 +

摘要

【目的】阐明银杏无性系材性差异,筛选材质优良的无性系,以期为银杏优良材用无性系选育、木材加工利用及定向培育提供理论依据。【方法】以江苏省邳州市银杏种质资源圃的22个银杏无性系为材料,分析木材基本密度、主要化学成分、管胞形态特性等11个材性指标变异规律,采用隶属函数法和布雷金多性状综合评价法进行木材材质评价,筛选优良材用无性系。【结果】除管胞长宽比外,其余10项材性性状在各银杏无性系间呈极显著差异(P<0.01)。各材性性状变异系数变化范围为9.21%~23.81%,重复力为0.316~0.988。相关性分析表明,木材密度与纤维素和木质素质量分数呈极显著正相关(P<0.01),管胞长度、宽度及腔径三者间呈极显著正相关(P<0.01)。根据隶属函数法,排名前二的是无性系37和23;基于布雷金多性状综合评价法,以10%为入选率,筛选出无性系37和23,其材性性状遗传增益变化范围为-10.13%~10.03%。2种评价方法筛选结果一致,无性系37和23基本密度较大,管胞长度较长、长宽比较大、纤维素质量分数较高、木质素质量分数较低、壁腔比较小,符合优质纤维材的标准。【结论】基本密度很大程度受遗传控制,具有较大选择潜力;综合评价结果初步认定无性系37和23为优良无性系,其纤维长度较长、木质素质量分数较低,可作为优质纤维用材无性系在生产实践中推广利用。

Abstract

【Objective】This study aims to elucidate the differences in wood properties among Ginkgo biloba clones and to screen for superior clones, thereby providing a theoretical basis for the breeding of high-quality timber clones, wood processing and utilization, and directional cultivation.【Method】22 G. biloba clones from a germplasm nursery in Pizhou City, Jiangsu Province, were studied. Variation patterns in 11 wood property traits: including basic wood density, main chemical components (cellulose, hemicellulose, lignin), and tracheid morphological characteristics (length, width, lumen diameter, wall thickness, length-to-width ratio, wall-to-lumen ratio) were analyzed. Wood quality of these clones was evaluated using the membership function method and the Bregman multi-trait comprehensive evaluation method to screen for superior timber-purpose clones.【Result】Except for the tracheid length-to-width ratio, the other 10 wood property traits exhibited highly significant differences among clones (P<0.01). The coefficients of variation (CV) for these traits ranged from 9.21% to 23.81%, and repeatability ranged from 0.316 to 0.988. Correlation analysis revealed that basic wood density was significantly positively correlated with cellulose and lignin content (P<0.01). Additionally, tracheid length, width, and lumen diameter were significantly positively correlated with each other (P<0.01). The membership function method ranked clones 37 and 23 as the top two. Using the Breggin method with a 10% selection rate, clones 37 and 23 were also selected. The genetic gain for the wood properties of these selected clones ranged from -10.13% to 10.03%. Both evaluation methods yielded consistent results: clones 37 and 23 exhibited higher basic density, longer tracheid length, a larger length-to-width ratio, higher cellulose content, lower lignin content, and a smaller wall-to-lumen ratio, meeting the criteria for high-quality fiber material.【Conclusion】Basic wood density is substantially controlled by genetics, indicating considerable potential for selection. Based on the comprehensive evaluation results, clones 37 and 23 characterized by long tracheid length and low lignin content, are recommended as superior fiber timber clones for practical application in production.

关键词

银杏 / 无性系 / 表型变异 / 重复力 / 木材材性 / 综合评价法

Key words

Ginkgo biloba / clones / phenotypic variation / repeatability / wood properties / comprehensive assessment method

引用本文

导出引用
李雄杰, 高钿惠, 巢锦一, . 银杏无性系木材密度、主要化学成分和管胞形态的研究及综合评价[J]. 南京林业大学学报(自然科学版). 2025, 49(6): 171-180 https://doi.org/10.12302/j.issn.1000-2006.202410027
LI Xiongjie, GAO Tianhui, CHAO Jinyi, et al. Study and comprehensive evaluation on wood density, main chemical components and tracheid morphology of Ginkgo biloba clones[J]. Journal of Nanjing Forestry University (Natural Sciences Edition). 2025, 49(6): 171-180 https://doi.org/10.12302/j.issn.1000-2006.202410027
中图分类号: S727.1   

参考文献

[1]
LIU Y F, ZHANG Y, XU Y, et al. Evaluation of the coordinated development of China's forest resources-economy-environment system[J]. Chinese Journal of Population,Resources and Environment, 2023, 21(4):249-256.DOI: 10.1016/j.cjpre.2023.11.007.
[2]
WU T B, ZHANG B, CAO Y K, et al. Impact of multi-dimensional and dynamic distance on China's exports of wooden forest products to countries along the “Belt and Road”[J]. Sustainability, 2020, 12(8):3339.DOI: 10.3390/su12083339.
National distance (ND) is the key factor that affects international trade but the traditional trade gravity model only considers spatial distance, which is not enough. This paper therefore constructs a trade gravity model and a Generalized Moment Estimation Model (GMM) based on four dimensions—spatial distance (SD), economic distance (ED), institutional distance (ID) and cultural distance (CD)—comprehensively analyzing the impact of the heterogeneity represented by national distance on exports of wooden forest products (EWFP) from China to countries along the “Belt and Road” using panel data from 2001 to2018. The results show that the impacts of the four types of ND on China’s EWFP are different and that a major change has taken place since the “Belt and Road” initiative was proposed, within which CD has become the key factor that hinders exports, while the traditional SD is not significant. Therefore, using NDs instead of the SD of the traditional trade gravity model is much more reasonable. Finally, this paper proposes some suggestions to reduce the ND between China and the route countries and to promote cooperation among them.
[3]
赵桂玲. “木材高效利用结构调控与定向重组机制” 国家自然科学基金重大项目结题综述[J]. 中国科学基金, 2024, 38(3):517-525.
ZHAO G L. Overview of the achievements of major program on “structural regulation and directional restructuring mechanism for efficient utilization of wood”[J]. Bulletin of National Natural Science Foundation of China, 2024, 38(3):517-525.DOI: 10.16262/j.cnki.1000-8217.20240625.002.
[4]
成俊卿. 木材学[M]. 北京: 中国林业出版社,1985:82-86.
CHENG J Q. Woodology[M]. Beijing: China Forestry Publishing House,1985:82-86.
[5]
李坚. 木材科学[M]. 3版. 北京: 科学出版社,2014:84-121.
LI J. Wood Science[M]. 3rd ed. Beijing: Science Press,2014:84-121.
[6]
CAVE I D, WALKER J C F. Stiffness of wood in fast-grown plantation softwoods-the influence of microfibril angle[J]. Forest Products Journal, 1994, 44(5):43-48.
[7]
SANTOS A J A, ALVES A M M, SIMÕES R M S, et al. Estimation of wood basic density of Acacia melanoxylon (R.Br.) by near infrared spectroscopy[J]. Journal of Near Infrared Spectroscopy, 2012, 20(2):267-274.
[8]
UNER B, KARAMAN Ī, TANRIVERDI H, et al. Prediction of lignin and extractive content of Pinus nigra Arnold.var.pallasiana tree using near infrared spectroscopy and multivariate calibration[J]. Journal of Wood Chemistry and Technology, 2009, 29(1):24-42.DOI: 10.1080/02773810802607567.
[9]
CHU D M, YAO T, ZHOU L, et al. Genetic variation analysis and comprehensive evaluation of wood property traits of 20-year-old Chinese fir clone[J]. European Journal of Forest Research, 2022, 141(1):59-69.DOI: 10.1007/s10342-021-01426-4.
[10]
李青粉, 王军辉, 李登平, 等. 青海云杉无性系木材性状的遗传变异[J]. 东北林业大学学报, 2015, 43(12):12-16,35.
LI Q F, WANG J H, LI D P, et al. Wood traits of Picea crassifolia clones[J]. Journal of Northeast Forestry University, 2015, 43(12):12-16,35.DOI: 10.13759/j.cnki.dlxb.2015.12.001.
[11]
严涵薇, 程雅静, 余彤彤, 等. 10年生黑杨派无性系材性径向遗传变异分析与综合评价[J]. 林业科学研究, 2021, 34(6):28-37.
YAN H W, CHENG Y J, YU T T, et al. Radial genetic variation analysis and comprehensive evaluation of wood properties in ten-year-old section aigeiros clones[J]. Forest Research, 2021, 34(6):28-37.DOI: 10.13275/j.cnki.lykxyj.2021.06.004.
[12]
齐明. 我国杉木无性系选育的成就、问题和对策[J]. 世界林业研究, 2007, 20(6):50-55.
QI M. Achievements, problems and countermeasures of clonal selection and breeding of Chinese fir in China[J]. World Forestry Research, 2007, 20(6):50-55.DOI: 10.13348/j.cnki.sjlyyj.2007.06.007.
[13]
江泽慧. 世界主要树种木材科学特性[M]. 2版. 北京: 科学出版社,2016:15-16.
JIANG Z H. Wood properties of the global important tree species[M]. 2nd ed. Beijing: Science Press,2016:15-16.
[14]
曹福亮. 中国银杏志[M]. 北京: 中国林业出版社,2007:7-12.
CAO F L. Ginkgo annals of China[M]. Beijing: China Forestry Publishing House,2007:7-12.
[15]
郁万文, 刘新亮, 曹福亮, 等. 不同银杏无性系叶药用成分差异及聚类分析[J]. 植物学报, 2014, 49(3):292-305.
摘要
运用HPLC技术分析了54个银杏(Ginkgo biloba)无性系叶总黄酮和萜内酯及其组分含量的差异, 并进行了聚类。结果表明, 银杏无性系间叶中总黄酮、萜内酯及其组分含量存在遗传变异, 且萜内酯及其组分含量的变异系数明显高于总黄酮及其组分。总黄酮含量较高的无性系有18、42、32和50号, 其槲皮素、异鼠李素、山奈酚含量均较高。萜内酯含量较高的无性系为13、42、33、51和65号, 其银杏内酯A(GA)、银杏内酯B(GB)、银杏内酯C(GC)及白果内酯(BB)含量均较高。通过对总黄酮-萜内酯进行联合复选, 显示叶中总黄酮和萜内酯含量均较高的无性系为13、65、33、51、18、32和42号。这些无性系可通过嫁接、扦插直接在银杏采叶园进行推广种植, 或作为叶用银杏新品种的育种材料。
YU W W, LIU X L, CAO F L, et al. Cluster analysis on the main medicinal components in differential leaves of Ginkgo clones[J]. Chinese Bulletin of Botany, 2014, 49(3):292-305.
[16]
巩其亮. 银杏无性系材性遗传变异及良种选择[D]. 泰安: 山东农业大学,2009:149.
GONG Q L. Genetic variation of wood properties of ginkgo clones and selection of improved varieties[D]. Taian: Shandong Agricultural University,2009:149.
[17]
尹思慈. 木材品质和缺陷[M]. 北京: 中国林业出版社, 1990: 19-21.
YIN S C. Wood quality and defects[M]. Beijing: Science Press, 1990: 19-21.
[18]
胡兴峰, 吴帆, 孙晓波, 等. 38年生马尾松种源生长及材性联合分析[J]. 南京林业大学学报(自然科学版), 2022, 46(3):203-212.
摘要
【目的】通过分析已达成熟期的马尾松种源生长与材性变异,揭示不同性状在地理种源上的变异规律,并筛选适合在安徽省六安市及类似立地区域推广的速生且材质优良的纸浆材种源。【方法】以安徽省六安市裕安区国有林木良种场的38年生(成熟林)马尾松55个种源为试材,测定其胸径、树高、管胞长度及宽度、基本密度和微纤丝角,进行生长与材性联合分析。【结果】胸径、树高、材积、管胞长度、管胞宽度、微纤丝角和基本密度在种源水平上均差异极显著(P&lt;0.01)。各性状表型变异系数、遗传变异系数分别为3.02%~58.61%、5.56%~28.16%;胸径、树高、材积、管胞长度、管胞宽度、基本密度和微纤丝角种源遗传力分别为0.665 7、0.558 9、0.616 9、0.996 3、0.965 6、0.739 3和0.823 3。相关性研究表明:生长性状与纬度呈显著负相关,与经度相关不显著;材性与经纬度均相关不显著,但表现出局部的变异规律;生长性状间相关性高于生长与材性间相关性;微纤丝角从髓心至树皮总体随着龄级的增大而减小,木材基本密度、管胞长和宽从髓心至树皮总体随着龄级的逐渐增大而增大,变化幅度随着龄级的增大而减小。通过综合指数选择出5个综合性状优良种源,其胸径、树高、材积、管胞长度与宽度、基本密度和微纤丝角平均遗传增益分别为3.69%、5.72%、15.12%、7.05%、-1.12%、0.17%和-6.46%。【结论】成熟林马尾松种源间差异显著,并且生长性状存在从南向北逐渐减小的变异规律,材性与经纬度不相关,对其进行纸浆材生长与材性联合选择具一定潜力,可为纸浆材马尾松良种选择提供可靠依据。
HU X F, WU F, SUN X B, et al. Joint analysis of growth and wood property of 38-year-old Pinus massoniana from 55 provenances[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2022, 46(3):203-212.DOI: 10.12302/j.issn.1000-2006.202104044.
[19]
续九如. 林木数量遗传学[M]. 北京: 高等教育出版社,2006:26-33.
XU J R. Quantitative genetics in forestry[M]. Beijing: Higher Education Press,2006:26-33.
[20]
朱之悌. 林木遗传学基础[M]. 北京: 中国林业出版社,1990:187-191.
ZHU Z T. Basis of forest genetics[M]. Beijing: China Forestry Publishing House,1990:187-191.
[21]
白史且, 苟文龙, 张新全, 等. 假俭草种群变异与生态特性的研究[J]. 北京林业大学学报, 2002, 24(4):97-101.
BAI S Q, GOU W L, ZHANG X Q, et al. Ecological characteristics and morphological variations of centipedegrass in different populations[J]. Journal of Beijing Forestry University, 2002, 24(4):97-101.DOI: 10.3321/j.issn:1000-1522.2002.04.022.
[22]
李善文, 姜岳忠, 王桂岩, 等. 黑杨派无性系多性状遗传分析及综合评选研究[J]. 北京林业大学学报, 2004, 26(3):36-40.
LI S W, JIANG Y Z, WANG G Y, et al. Genetic analysis and comprehensive evaluation for multi-traits in Section Aigeiros clones[J]. Journal of Beijing Forestry University, 2004, 26(3):36-40.DOI: 10.3321/j.issn:1000-1522.2004.03.007.
[23]
王淼, 吴国亮, 张蕊, 等. 木荷18年生种源生长、材性的地理种源变异[J]. 应用生态学报, 2023, 34(9):2337-2344.
摘要
本研究以福建建瓯18年生24个木荷种源为材料,分析树高、胸径、木材基本密度以及木纤维解剖结构等11个生长和材性性状的种源变异规律及与地理气候因子间的相关性,通过聚类分析进行种源区划分,揭示木荷生长和材性的地理变异模式,根据不同用途,筛选优良用材种源。结果表明: 木荷生长性状变异较大(17.6%~27.3%,平均22.4%),材性性状变异相对较小(7.0%~21.0%,平均12.7%),生长性状和部分材性性状(纤维长、腔径和双壁厚等)在种源间具有显著差异。相关分析表明,生长性状与材性性状不相关,两者相对独立,可单独对某一性状进行选择与改良。木纤维纵向生长指标以及径向生长指标之间呈显著相关,但其与木材基本密度均不相关,两者可独立选择;木荷生长与材性性状受温度影响显著,同时亦受降水影响,呈纬向变异模式。根据Q型聚类分析,将24个种源分为4类,其中,木荷分布区南部种源的木纤维微纤丝角较小,成熟度较高,纤维较长,细胞壁较厚,材性相对较好。根据造纸和建筑家居等不同用材用途,选出5个优良种源。
WANG M, WU G L, ZHANG R, et al. Geographical provenance variation of growth and wood properties of 18-year-old Schima superba[J]. Chinese Journal of Applied Ecology, 2023, 34(9):2337-2344.DOI: 10.13287/j.1001-9332.202309.003.
We analyzed the variation patterns of growth and wood properties of 24 different provenances of 18-year-old <i>Schima superba</i> in Jian’ou, Fujian Province. A total of 11 growth and wood indices were measured, including tree height, diameter at breast height, wood basic density and anatomical structure. We analyzed the geographical variation patterns of growth and wood properties, and the provenance areas were divided. Further, the excellent timber provenances were selected according to different uses. The results showed that the variation of growth traits, which was 17.6%-27.3% with mean value of 22.4%, was larger than that of wood properties (7.0%-21.0%, mean 12.7%). Growth properties and some wood properties (fiber length, fiber lumen diameter and fiber cell wall thickness) had significant differences among provenances. Growth traits were not correlated with fiber traits, and they could be selected independently without emphasis on other traits. There was significant correlation between the longitudinal and radial growth indicators of wood properties, but they were not correlated with the wood basic density, which could be selected independently. In addition, the growth and wood properties were significantly influenced by temperature and precipitation, which showed a latitudinal variation pattern. According to Q-type clustering analysis, 24 provenances could be divided into four categories, of which southern provenances from distribution area of <i>S. superba</i> had vigorous growth and supper wood properties. They had smaller microfibril angle, higher maturity, longer fiber length, and thicker fiber cell wall. Finally, five excellent provenances were selected according to pulpwood and building use.
[24]
胡拉, 吴东山, 徐慧兰, 等. 青冈栎天然林木材的解剖特征及基本材性研究[J]. 西南林业大学学报(自然科学), 2018, 38(2):206-210.
HU L, WU D S, XU H L, et al. Wood anatomical characteristics and basic properties of Cyclobalanopsis glauca natural forest[J]. Journal of Southwest Forestry University (Natural Sciences), 2018, 38(2):206-210.
[25]
乔卫阳, 邱勇斌, 邹军, 等. 红椿天然林分木材材性性状变异规律研究[J]. 中南林业科技大学学报, 2017, 37(5):101-105.
QIAO W Y, QIU Y B, ZOU J, et al. Study on variation pattern of wood traits in natural stands of Toona ciliata[J]. Journal of Central South University of Forestry & Technology, 2017, 37(5):101-105.DOI: 10.14067/j.cnki.1673-923x.2017.05.018.
[26]
尚秀华, 张沛健, 罗建中, 等. 赤桉幼龄材物理力学性质研究[J]. 西北农林科技大学学报(自然科学版), 2019, 47(5):32-41.
SHANG X H, ZHANG P J, LUO J Z, et al. Physical and mechanical properties of Eucalyptus camaldulensis juvenile wood[J]. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(5):32-41.DOI: 10.13207/j.cnki.jnwafu.2019.05.005.
[27]
杨雪梅, 陈庭巧, 赵杨. 马尾松半同胞子代林材性变异研究[J]. 西南林业大学学报(自然科学), 2018, 38(3):15-20.
YANG X M, CHEN T Q, ZHAO Y. Variation within tree of wood properties in half-sib progeny of Pinus massoniana[J]. Journal of Southwest Forestry University (Natural Sciences), 2018, 38(3):15-20.DOI: 10.11929/j.issn.2095-1914.2018.03.003.
[28]
赵林峰, 高建亮. 杉木速生无性系30年生木材材性的比较[J]. 中南林业科技大学学报, 2021, 41(8):153-160.
ZHAO L F, GAO J L. Comparative study on the physical and mechanical properties of fast-growing clones of Chinese fir in 30 years[J]. Journal of Central South University of Forestry & Technology, 2021, 41(8):153-160.DOI: 10.14067/j.cnki.1673-923x.2021.08.018.
[29]
李娜, 杨袁木, 徐放, 等. 红锥优树无性系群体表型变异研究及综合选择[J]. 中南林业科技大学学报, 2023, 43(8):73-84.
LI N, YANG Y M, XU F, et al. Phenotypic variation study and comprehensive selection of elite clonal populations of Castanopsis hystrix[J]. Journal of Central South University of Forestry & Technology, 2023, 43(8):73-84.DOI: 10.14067/j.cnki.1673-923x.2023.08.008.
[30]
韦一, 范艳如, 邱勇斌, 等. 毛红椿生长、心材和材性性状遗传分析及家系选择[J]. 林业科学研究, 2024, 37(4):33-40.
WEI Y, FAN Y R, QIU Y B, et al. Genetic analysis and family selection of growth,heartwood and wood traits for Toona ciliata var. pubescens[J]. Forest Research, 2024, 37(4):33-40.
[31]
程琳, 戴俊, 罗启亮, 等. 14个杉木家系主要用材性状表型多样性分析与评价[J]. 热带亚热带植物学报, 2022, 30(6):874-883.
CHENG L, DAI J, LUO Q L, et al. Phenotypic diversity analysis and evaluation of main timber traits in 14 families of Chinese fir[J]. Journal of Tropical and Subtropical Botany, 2022, 30(6):874-883.
[32]
于海洋, 庞忠义, 殷春红, 等. 100个杨树无性系生长及材性变异研究[J]. 西北林学院学报, 2023, 38(4):134-142,155.
YU H Y, PANG Z Y, YIN C H, et al. Variation analysis on the growth and wood properties of 100 poplar clones[J]. Journal of Northwest Forestry University, 2023, 38(4):134-142,155.
[33]
魏嘉彤, 陈思琪, 芦贤博, 等. 基于生长与木材性状的红松优良种源评价选择[J]. 北京林业大学学报, 2022, 44(3):12-23.
WEI J T, CHEN S Q, LU X B, et al. Evaluation and selection of excellent provenances of Pinus koraiensis based on growth and wood properties[J]. Journal of Beijing Forestry University, 2022, 44(3):12-23.
[34]
LI J Q, SU X D, GUO J, et al. Sex-related differences of Ginkgo biloba in growth traits and wood properties[J]. Forests, 2023, 14(9):1809.DOI: 10.3390/f14091809.
[35]
杨艳, 唐洁, 李永进, 等. 7个南方适生杨树无性系生长和木材纤维性状分析与评价[J]. 浙江农林大学学报, 2022, 39(4):807-813.
YANG Y, TANG J, LI Y J, et al. Analysis and evaluation of growth and wood fiber characters of seven poplar clones in Southern China[J]. Journal of Zhejiang A & F University, 2022, 39(4):807-813.
[36]
牛敏, 高慧, 赵广杰. 欧美杨107应拉木的纤维形态与化学组成[J]. 北京林业大学学报, 2010, 32(2):141-144.
NIU M, GAO H, ZHAO G J. Fiber morphology and chemical composition of tension wood in Populus × euramericana cv.‘Neva'[J]. Journal of Beijing Forestry University, 2010, 32(2):141-144.DOI: 10.13332/j.1000-1522.2010.02.022.
[37]
邢馨忆, 王冰冰, 关莹, 等. 楸树不同无性系木材部分材性径向变异研究[J]. 林业工程学报, 2022, 7(2):72-77.
XING X Y, WANG B B, GUAN Y, et al. Study on the radial variation in sectional wood properties from different Catalpa bungei clones[J]. Journal of Forestry Engineering, 2022, 7(2):72-77.DOI: 10.13360/j.issn.2096-1359.202105033.
[38]
SYKES R, ISIK F, LI B, et al. Genetic variation of juvenile wood properties in a loblolly pine progeny test[J]. Tappi journal, 2003, 2(12): 3-8.
[39]
HU J Q, QI Q, ZHAO Y L, et al. Unraveling the impact of Pto4CL1 regulation on the cell wall components and wood properties of perennial transgenic Populus tomentosa[J]. Plant Physiology and Biochemistry, 2019, 139:672-680.DOI: 10.1016/j.plaphy.2019.03.035.
[40]
刘海琳, 国增超, 侯静, 等. 簸箕柳F1杂交群体木材材性与生长性状相关性分析[J]. 中南林业科技大学学报, 2016, 36(2):45-49.
LIU H L, GUO Z C, HOU J, et al. Study on wood property and the growth for progeny in a full-sib family of Salix suchowensis[J]. Journal of Central South University of Forestry & Technology, 2016, 36(2):45-49.DOI: 10.14067/j.cnki.1673-923x.2016.02.008.
[41]
盛业龙, 王莎莎, 许美玲, 等. 应用隶属函数法综合评价不同烤烟品种苗期抗旱性[J]. 南方农业学报, 2014, 45(10):1751-1758.
SHENG Y L, WANG S S, XU M L, et al. Comprehensive evaluation on drought resistance of flue-cured tobacco varieties at seedling stage by subordinate function values analysis[J]. Journal of Southern Agriculture, 2014, 45(10):1751-1758.
[42]
张俊佩, 王滋, 周贤武, 等. 不同品系美国黑核桃木材物理力学性质的差异[J]. 林业科学, 2016, 52(6):108-114.
ZHANG J P, WANG Z, ZHOU X W, et al. Wood physical and mechanical properties of American black walnut of different strains[J]. Scientia Silvae Sinicae, 2016, 52(6):108-114.DOI: 10.11707/j.1001-7488.20160613.
[43]
赵林峰, 高建亮, 彭劲松, 等. 3种类型杉木林分生长、密度和材质的综合评价[J]. 安徽农业大学学报, 2023, 50(1):29-35.
ZHAO L F, GAO J L, PENG J S, et al. Comprehensive evaluation of the growth,density and texture of three types of Cunninghamia lanceolata[J]. Journal of Anhui Agricultural University, 2023, 50(1):29-35.DOI: 10.13610/j.cnki.1672-352x.20230315.021.
[44]
陈柄华, 张杰, 刘桂丰, 等. 白桦半同胞家系纸浆材优良家系选择及选择方法评价[J]. 植物研究, 2023, 43(5):690-699.
摘要
通过对白桦(Betula platyphylla)半同胞家系生长和纸浆材性状的遗传变异规律研究,筛选出优良的纸浆材家系,为白桦材性遗传改良提供理论基础。以7年生32个白桦半同胞家系为试材,对各个家系生长和木材性状进行方差分析、计算遗传参数,并估算配合力,采用多种选择方法进行优良家系选择并且评价优良亲本。结果表明:家系间的生长和木材性状均达到了极显著差异水平(P&lt;0.01),且家系遗传力处于0.71~1.00,单株遗传力在2.0~3.0,表型变异系数处于5.88%~49.84%。胸径、树高、材积3个性状之间达到了极显著强正相关关系(r值:0.70~0.97),纤维长宽比与纤维长度之间存在极显著强正相关关系(r值:0.69),与纤维宽度存在极显著强负相关关系(r值:-0.76)。利用一般配合力进行优良亲本评价,材积、基本密度、纤维长度的一般配合力分别是-0.001 1~0.001 0、-0.04~0.07、-112.09~77.36,选择出A13、A12、A21、A24四个家系的母本属于优良亲本。通过布雷金多性状综合分析法、主成分分析法和育种值评价法进行优良家系评价,比较3个方法的优劣,最终选择出5个优良纸浆材家系,入选家系的材积和综纤维素平均遗传增益分别达到12.97%和3.40%。选择出A12、A17、A23、A19、A1为优良纸浆材家系,为进一步选育白桦速生纸浆材良种提供材料。
CHEN B H, ZHANG J, LIU G F, et al. Selection of excellent families and evaluation of selection method for pulpwood half-sibling families of Betula platyphylla[J]. Bulletin of Botanical Research, 2023, 43(5):690-699.DOI: 10.7525/j.issn.1673-5102.2023.05.006.

基金

江苏省重点研究发展项目(BE2022373)

编辑: 李燕文
PDF(1829 KB)

Accesses

Citation

Detail

段落导航
相关文章

/