六个蓝莓品种不同发育期果实糖代谢相关特征比较分析

杨海燕, 吴雅琼, 张春红, 闾连飞, 吴文龙, 魏林潇, 李维林

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (3) : 73-82.

PDF(3072 KB)
PDF(3072 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (3) : 73-82. DOI: 10.12302/j.issn.1000-2006.202410028
专题报道Ⅱ:乡村全面振兴视域下蓝莓优新品种培育研究

六个蓝莓品种不同发育期果实糖代谢相关特征比较分析

作者信息 +

A comparative analysis of sugar metabolism-related characteristics in different development stage fruits of six blueberry cultivars

Author information +
文章历史 +

摘要

【目的】分析蓝莓(Vaccinum spp.)果实发育过程中糖及其他品质指标的变化特点,探讨蓝莓果实发育过程中糖类物质积累的潜在机制,为品质改良提供理论依据。【方法】以6个蓝莓品种不同发育阶段的果实为研究对象,对其外观参数、抗氧化指标、品质指标、糖转运蛋白基因的表达,以及糖的组分和含量进行测定,并采用Pearson模型进行各指标间的相关性分析。【结果】随着果实的发育,各品种果实逐渐增大,颜色逐渐加深,在紫果期(S3),6个蓝莓品种中,‘莱克西’的单果质量和横径最大,‘中植2号’最小;在紫果期(S3)‘莱克西’的颜色指标L值最大,a*b*值最小。随着果实的发育, O 2   · -的产生速率和丙二醛(MDA)含量逐渐上升,H2O2含量(除‘中植4号’外)和超氧化物歧化酶(SOD)活性均先降后升,过氧化物酶(POD)活性逐渐增加;可溶性固形物和花色苷含量逐渐上升,黄酮含量逐渐下降,鞣花酸含量先降后升,其中‘中植4号’紫果期的可溶性固形物和花色苷含量最高;3个VcSWEETs基因的表达具有明显的品种特异性和发育阶段依赖性;蔗糖、葡萄糖、果糖和总糖含量持续增加,其中葡萄糖含量在各阶段均较低,在S3时期,除‘中植1号’外总糖质量分数均大于200 mg/g。【结论】随着果实的发育,糖含量逐渐增加,S3时期‘莱克西’的总糖含量最高,其次是‘中植2号’和‘中植4号’;果实的增大、花色苷含量和POD活性的增加,以及VcSWEET1基因的上调表达均有利于糖积累。

Abstract

【Objective】The purpose of this study is to understand the changes in sugar and other quality indexes during fruit development, to explore the potential mechanism of carbohydrate accumulation during blueberry (Vaccinium spp.) fruit development, and to establish a theoretical foundation for blueberry quality enhancement.【Method】Fruits of six blueberry cultivars at different developmental stages were used as the test materials. The morphological traits (size and color), antioxidant system-related parameters, fruit quality indexes, the expression levels of VcSWEETs genes, and sugar composition and content were determined. The correlation analysis among these parameters was performed using the Pearson correlation model.【Result】With the development of the fruit, the fruits of each cultivar gradually increased in size and deepened in color, of which the ‘Legacy’ cultivar had the largest fruit weight and transverse diameter, and ‘Zhongzhi 2’ had the smallest during the purple fruit stage (S3). In the S3 period, ‘Legacy’ showed peak L value with minimal a* and b* values. The generation rate of O 2   · - and MDA content steadily increased, while H2O2 content (excluding ‘Zhongzhi 4’) and SOD activity decreased first and then increased, and POD activity gradually increased. Total soluble solids (TSS) and anthocyanin contents gradually increased, flavonoid content gradually decreased, and ellagic acid content initially decreased and then increased. Among them, ‘Zhongzhi 4’ had the highest TSS and anthocyanin content during the S3 period. The expression patterns of three VcSWEETs genes exhibited distinct cultivar specificity and developmental stage dependence. Sucrose, glucose, fructose, and total sugar accumulated continuously, though glucose maintained basal levels. In the S3 period, the total sugar contents of all cultivars were more than 200 mg/g, except for ‘Zhongzhi 1’.【Conclusion】Sugar content increased continually during fruit development, with sucrose and fructose concentrations predominating over glucose. ‘Legacy’ had the greatest total sugar content during the S3 period, followed by ‘Zhongzhi 2’ and ‘Zhongzhi 4’. The expansion of the fruit, the rise in anthocyanin content and POD activity, and the up-regulated expression of the VcSWEET1 gene were significantly correlated with sugar accumulation patterns.

关键词

蓝莓 / 果实发育 / 糖代谢 / 果实品质 / 基因调控

Key words

Vaccinium spp. (blueberry) / fruit development / carbohydrate metabolism / fruit quality / gene regulation

引用本文

导出引用
杨海燕, 吴雅琼, 张春红, . 六个蓝莓品种不同发育期果实糖代谢相关特征比较分析[J]. 南京林业大学学报(自然科学版). 2025, 49(3): 73-82 https://doi.org/10.12302/j.issn.1000-2006.202410028
YANG Haiyan, WU Yaqiong, ZHANG Chunhong, et al. A comparative analysis of sugar metabolism-related characteristics in different development stage fruits of six blueberry cultivars[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(3): 73-82 https://doi.org/10.12302/j.issn.1000-2006.202410028
中图分类号: S722   

参考文献

[1]
徐艺格, 王兴东, 刘有春, 等. 蓝莓产业现状及技术发展趋势分析与展望[J]. 北方园艺, 2024(8):130-136.
XU Y G, WANG X D, LIU Y C, et al. Analysis and prospect of blueberries industry status and technology development trend[J]. Northern Horticulture, 2024(8):130-136.DOI:10.11937/bfyy.20232984.
[2]
ZHANG C H, LI J, WANG J L, et al. Fruit quality and metabolomic analyses of fresh food accessions provide insights into the key carbohydrate metabolism in blueberry[J]. Plants, 2023, 12(18):3200.DOI: 10.3390/plants12183200.
[3]
李双双, 王德炉, 赵迪. 水肥耦合对蓝莓树体生长及果实品质的影响[J]. 经济林研究, 2017, 35(3):234-238,250.
LI S S, WANG D L, ZHAO D. Effects of water-fertilizer coupling on growth and fruit quality of blueberry trees[J]. Nonwood Forest Research, 2017, 35(3):234-238,250.DOI: 10.14067/j.cnki.1003-8981.2017.03.037.
[4]
XU J Y, ZHAO Y H, ZHANG X, et al. Transcriptome analysis and ultrastructure observation reveal that hawthorn fruit softening is due to cellulose/hemicellulose degradation[J]. Frontiers in Plant Science, 2016,7:1524.DOI: 10.3389/fpls.2016.01524.
[5]
SMRKE T, VEBERIC R, HUDINA M, et al. Fruit quality and yield of three highbush blueberry (Vaccinium corymbosum L.) cultivars grown in two planting systems under different protected environments[J]. Horticulturae, 2021, 7(12):591.DOI: 10.3390/horticulturae7120591.
[6]
ZHANG S H, WANG H, WANG T, et al. Abscisic acid and regulation of the sugar transporter gene MdSWEET9b promote apple sugar accumulation[J]. Plant Physiology, 2023, 192(3):2081-2101.DOI: 10.1093/plphys/kiad119.
[7]
王爱国, 罗广华. 植物的超氧物自由基与羟胺反应的定量关系[J]. 植物生理学通讯, 1990, 26(6):55-57.
WANG A G, LUO G H. Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants[J]. Plant Physiology Communications, 1990, 26(6):55-57.DOI: 10.13592/j.cnki.ppj.1990.06.031.
[8]
HODGES D M, DELONG J M, FORNEY C F, et al. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds[J]. Planta, 1999, 207(4):604-611.DOI: 10.1007/s004250050524.
[9]
STEWART R R, BEWLEY J D. Lipid peroxidation associated with accelerated aging of soybean axes[J]. Plant Physiology, 1980, 65(2):245-248.DOI: 10.1104/pp.65.2.245.
[10]
PODGÓRSKA A, GIECZEWSKA K, LUKAWSKA-KUZMA K, et al. Long-term ammonium nutrition of Arabidopsis increases the extrachloroplastic NAD(P)H/NAD(P)+ ratio and mitochondrial reactive oxygen species level in leaves but does not impair photosynthetic capacity[J]. Plant,Cell & Environment, 2013, 36(11):2034-2045.DOI: 10.1111/pce.12113.
[11]
CHENG G W, BREEN P J. Activity of phenylalanine ammonialyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit[J]. Journal of the American Society for Horticultural Science, 1991, 116(5):865-869.DOI: 10.21273/jashs.116.5.865.
[12]
MAAS J L, WANG S Y, GALLETTA G J. Evaluation of strawberry cultivars for ellagic acid content[J]. HortScience, 1991, 26(1):66-68.DOI: 10.21273/hortsci.26.1.66.
[13]
YANG H, WU Y Q, ZHANG C H, et al. Comprehensive resistance evaluation of 15 blueberry cultivars under high soil pH stress based on growth phenotype and physiological traits[J]. Frontiers in Plant Science, 2022,13:1072621.DOI: 10.3389/fpls.2022.1072621.
[14]
NGUYEN C T T, LEE J H, TRAN P T. Accumulation of sugars and associated gene expression in highbush blueberries differ by cultivar,ripening stage,and storage temperature[J]. Journal of Berry Research, 2021, 11(3):511-527.DOI: 10.3233/jbr-210748.
[15]
CHEN C, WU X M, PAN L, et al. Effects of exogenous α-naphthaleneacetic acid and 24-epibrassinolide on fruit size and assimilate metabolism-related sugars and enzyme activities in giant pumpkin[J]. International Journal of Molecular Sciences, 2022, 23(21):13157.DOI: 10.3390/ijms232113157.
[16]
严志祥, 杨海燕, 樊苏帆, 等. 黑莓果实发育过程中蔗糖磷酸合成酶基因的表达分析[J]. 南京林业大学学报(自然科学版), 2022, 46(1):179-186.
YAN Z X, YANG H Y, FAN S F, et al. Analysis of the expression of sucrose phosphate synthase genes during the development of blackberry fruit[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2022, 46(1):179-186.DOI: 10.12302/j.issn.1000-2006.202007067.
[17]
HARA M, OKI K, HOSHINO K, et al. Enhancement of anthocyanin biosynthesis by sugar in radish (Raphanus sativus) hypocotyl[J]. Plant Science, 2003, 164(2):259-265.DOI: 10.1016/S0168-9452(02)00408-9.
[18]
张琼, 王红清, 冷平, 等. 草莓果实发育过程中花色苷和黄酮醇类物质的形成机制[J]. 园艺学报, 2008, 35(12):1735-1741.
ZHANG Q, WANG H Q, LENG P, et al. Mechanism of anthocyanins and flavonols in fruit development of straw-berries[J]. Acta Horticulturae Sinica, 2008, 35(12):1735-1741.DOI: 10.16420/j.issn.0513-353x.2008.12.003.
[19]
SHOJAEE F M, KAZEMI E M, NOSRATI H, et al. Evaluation of phytochemicals and the role of oxidative stress pathways during fruit development in strawberries (Fragaria × Ananassa)[J]. Turkish Journal of Botany, 2023, 47(5):342-352.DOI: 10.55730/1300-008x.2772.
[20]
梁文超, 步行, 罗思谦, 等. 氮磷钾复合肥对增温促花后‘长寿冠’海棠生理特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(5):81-88.
LIANG W C, BU X, LUO S Q, et al. Effects of nitrogen,phosphorus and potassium compound fertilization on the physiological characteristics of Chaenomeles speciosa ‘Changshouguan’ after processing of warming in the post floral stage[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2022, 46(5):81-88.DOI: 10.12302/j.issn.1000-2006.202109025.
[21]
SADDHE A A, MANUKA R, PENNA S. Plant sugars:homeostasis and transport under abiotic stress in plants[J]. Physiologia Plantarum, 2021, 171(4):739-755.DOI: 10.1111/ppl.13283.
[22]
IM S E, NAM T G, LEE H, et al. Anthocyanins in the ripe fruits of Rubus coreanus Miquel and their protective effect on neuronal PC-12 cells[J]. Food Chemistry, 2013, 139(1/2/3/4):604-610.DOI: 10.1016/j.foodchem.2012.12.057.
[23]
FLORES G, RUIZ DEL CASTILLO M L. Variations in ellagic acid,quercetin and myricetin in berry cultivars after preharvest methyl jasmonate treatments[J]. Journal of Food Composition and Analysis, 2015, 39:55-61.DOI: 10.1016/j.jfca.2014.11.007.
[24]
HU X B, LI S J, LIN X H, et al. Transcription factor CitERF16 is involved in citrus fruit sucrose accumulation by activating CitSWEET11d[J]. Frontiers in Plant Science, 2021,12:809619.DOI: 10.3389/fpls.2021.809619.
[25]
王鸿梅, 张召聪, 刘坤, 等. 植物SWEET基因及其糖转运功能研究进展[J]. 河北科技大学学报, 2024, 45(4):406-414.
WANG H M, ZHANG Z C, LIU K, et al. SWEET genes responsible for sugar transport in plant:a review[J]. Journal of Hebei University of Science and Technology, 2024, 45(4):406-414.DOI: 10.7535/hbkd.2024yx04007.

基金

江苏省种业振兴揭榜挂帅项目(JBGS[2021]021)

编辑: 李燕文
PDF(3072 KB)

Accesses

Citation

Detail

段落导航
相关文章

/