PDF(6852 KB)
基于深度学习算法的杉木人工林单木冠幅回归模型
周钰祺, 孙玉军, 谢运鸿, 梁瑞婷, 颜雯
南京林业大学学报(自然科学版) ›› 2026, Vol. 50 ›› Issue (1) : 231-240.
PDF(6852 KB)
PDF(6852 KB)
基于深度学习算法的杉木人工林单木冠幅回归模型
Construction of Cunninghamia lanceolata tree crown width regression model based on deep learning algorithms
【目的】 以福建省将乐国有林场为研究区,构建福建将乐地区杉木人工林深度学习冠幅模型,分析树木大小、林分结构、林分竞争对杉木冠幅预测的贡献。【方法】利用深度神经网络(deep neural network,DNN)构建6个NDD模型,并利用SHAP(shapley additive explanations)解释器解释各变量在模型中的特征重要性。构建一个广义冠幅模型,并与输入相同相关系数优选变量的DNN模型进行比较,验证DNN模型的可靠性。【结果】构建的DNN模型均无过拟合,十折交叉验证的均方根误差(RMSE)和平均误差(MAE)均稳定。由所有13个变量构成的DNN模型(DNN5)的决定系数(R2)达到0.60,表现最佳,但输入6个变量的DNN模型(DNN3和DNN4)的R2分别为0.58和0.57,更符合实际应用要求,DNN模型在处理多变量数据时具有良好的鲁棒性。经过相关系数优选变量构成的DNN6模型的R2(0.54)高于同等变量构成的广义冠幅模型的R2(0.46)。胸径的SHAP贡献值最大,此外林分结构中的林分断面积、林分密度指数以及林分竞争中麦金托什直径均匀度等级和基尼系数在特征排序中占据了重要的位置,引入这两类变量能较大幅度地提高冠幅模型的准确度。【结论】构建的DNN模型能够较好地预测研究区杉木冠幅,深度学习在杉木冠幅预测方面有很大的潜力。
【Objective】 This study constructed a deep learning-based crown width model for Cunninghamia lanceolata plantations in the Jiangle region, aiming to analyze the contributions of tree size, site quality, stand structure, and competition to crown width prediction. 【Method】Six deep neural network (DNN) models were developed, and the shapley additive explanations (SHAP) interpreter was employed to analyze the feature importance of each variable. Additionally, a generalized crown width model was built and compared with the DNN model that utilized the same set of optimally selected variables based on correlation coefficients, in order to validate the reliability of the DNN approach. 【Result】The constructed DNN models exhibited no overfitting, with stable root mean square error (RMSE) and mean absolute error (MAE) values in 10-fold cross-validation. The DNN model incorporating all 13 variables (DNN5) achieved the highest performance, with an R2 of 0.60. However, models with six input variables (DNN3 and DNN4) yielded R2 values of 0.58 and 0.57, respectively, which better meet practical application needs. The DNN6 model, constructed using variables selected based on their correlation coefficients, achieved an R2 of 0.54, outperforming the generalized crown width model (R2= 0.46) that used the same variables. The SHAP contribution value of DBH was the highest. Additionally, in the feature ranking, basal area (BA), stand density index (SDI), McIntosh evenness of diameter class (Emi), and Gini coefficient (GC) held important positions. The inclusion of both types of variables significantly improved prediction the accuracy of the crown width model. 【Conclusion】The results demonstrate that the constructed DNN model effectively predicted the crown width of C. lanceolata in the study area, indicating that deep learning holds significant potential for crown width modeling.
冠幅模型 / 杉木 / 深度学习 / 深度神经网络(DNN) / SHAP可解释性分析
crown width model / Cunninghamia lanceolata (Chinese fir) / deep learning / deep neural netword (DNN) / SHAP interpretability analysis
| [1] |
周柏屹, 孙麟均, 吴鹏飞, 等. 杉木大径材培育研究进展[J]. 世界林业研究, 2024, 37(1):54-58.
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
雷相东, 张则路, 陈晓光. 长白落叶松等几个树种冠幅预测模型的研究[J]. 北京林业大学学报, 2006, 28(6):75-79.
|
| [7] |
|
| [8] |
|
| [9] |
邱思玉, 孙玉军. 长白落叶松人工林单木冠幅模型[J]. 东北林业大学学报, 2021, 49(2):49-53.
|
| [10] |
吕乐, 董利虎, 李凤日. 黑龙江省东部地区天然椴树单木冠幅预测模型[J]. 东北林业大学学报, 2019, 47(7):37-42.
|
| [11] |
钟思琪, 宁金魁, 黄锦程, 等. 基于混合效应的杉木人工林冠幅模型[J]. 森林与环境学报, 2024, 44(2):127-135.
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
梁瑞婷, 孙玉军, 李芸. 深度学习和传统方法模拟杉木树高-胸径模型比较[J]. 林业科学研究, 2021, 34(6):65-72.
|
| [18] |
|
| [19] |
符利勇, 孙华. 基于混合效应模型的杉木单木冠幅预测模型[J]. 林业科学, 2013, 49(8):65-74.
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
/
| 〈 |
|
〉 |