基于高光谱的不同林分冠层可燃物水分特征研究

张水锋, 张金池, 张阳, 郑怀兵, 顾哲衍, 刘鑫

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (6) : 238-246.

PDF(2268 KB)
PDF(2268 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (6) : 238-246. DOI: 10.12302/j.issn.1000-2006.202411004
研究论文

基于高光谱的不同林分冠层可燃物水分特征研究

作者信息 +

Research on canopy water content of different forest stands based on hyperspectral analysis

Author information +
文章历史 +

摘要

【目的】林分冠层可燃物水分参数在森林植物生理状态与火灾风险评估中发挥着重要的作用,本研究主要探讨了利用野外高光谱探测数据估算植被冠层可燃物水分特征参数的方法,为快速无损地获取植被冠层水分特征信息以评估森林可燃物火险提供新的途径。【方法】针对马尾松(Pinus massoniana)、火炬松(Pinus taeda)、香樟(Camphora officinarum)和石楠(Photinia serratifolia)共4种林分的冠层样本,通过野外采样测定和室内实验获取了样本叶片的光谱反射数据、叶面积、鲜质量和干质量,以及林分样本的叶面积指数(LAI)等数据,并分别对LAI和水分特征变量[可燃物含水率(FMC)、等效水厚度(EWT)、冠层水平可燃物含水率(FMCC)和冠层水平等效水厚度(EWTC)]及其相关性进行了分析。采用偏最小二乘回归法(PLSR)和人工神经网络(ANN)法对水分特征参数FMCC和EWTC进行预测估算。【结果】4种林分的FMCC和EWTC汇总样本的估算和验证过程表明,PLSR方法的决定系数均大于ANN法,而均方根误差(RMSE)则均小于ANN法。在4种不同类型林分冠层可燃物的水分特征变量EWTC与FMCC值估算中,采用PLSR方法分析的R2均值为0.73,RMSEcv均值为0.22,马尾松表现最优(EWTCR2=0.80,RMSECV为0.02;FMCCR2=0.74,RMSECV为0.19);而采用ANN法的 R C V 2均值为0.76,RMSECV均值为0.20,采用ANN-2作为输入的马尾松FMCC估算( R C V 2=0.91,RMSECV为0.12)和火炬松的EWTC值估算( R C V 2=0.90,RMSECV为0.01)表现最优。【结论】EWTC与FMCC均可从反射光谱中获得较为准确的估算,FMCC作为一种基于质量的变量,通过PLSR和ANN法均可获得高于基于面积的变量EWTC的估算精度。在决定光谱发射率方面,植物质量可能比植物面积发挥更大的作用,即可燃物的质量因素对光谱反射率水分特征反演的影响更大,叶片面积影响则相对较小。总体来看,野外探测的林分冠层高光谱数据用于估算可燃物水分特征参数的效果较好,可辅助森林可燃物火险预测预报和风险等级评估。

Abstract

【Objective】Canopy fuel moisture parameters play a crucial role in assessing the physiological status of forest plants and fire risk. This study primarily explores methods for estimating vegetation canopy fuel moisture characteristic parameters using field hyperspectral data, providing a new approach for rapidly and non-destructively acquiring vegetation canopy moisture characteristic information to assess forest fuel fire risk.【Method】For canopy samples from four forest types, including Pinus massoniana, P. taeda, Camphora officinarum and Photinia serratifolia, spectral reflectance data, leaf area, fresh weight, dry weight, and leaf area index (LAI) were obtained through field sampling and laboratory experiments. Correlations between LAI and moisture characteristic variables (FMC, EWT, FMCC and EWTC) were analyzed. Partial least squares regression (PLSR) and artificial neural networks (ANN) were used to predict and estimate the moisture characteristic parameters FMCC and EWTC.【Result】The correlation between LAI and FMCC (R2=0.86) was significantly higher than that between LAI and EWTC(R2=0.04), while the correlation between LAI and EWT (R2=0.52) was slightly higher than that between LAI and FMC (R2=0.50). The estimation and validation processes for the aggregated samples of FMCC and EWTC across the four forest stand types showed that the coefficient of determination for the PLSR method was higher than that for the ANN, while the root mean square error was lower. In the estimation of EWTC and FMCC values for canopy fuel moisture characteristic variables in the four different forest types, the mean R2 value was 0.73 and the mean RMSEcv was 0.22 when using the PLSR method. P. massoniana showed the best performance (FMCC: R2=0.80, RMSECV=0.02; EWTC: R2=0.74, RMSECV=0.19). When using the ANN method, the mean R2 value was 0.76 and the mean RMSEcv was 0.20. The best performance was observed for the estimation of FMCC in P. massoniana ( R C V 2=0.91, RMSECV=0.12) and EWTC in P. taeda ( R C V 2=0.90, RMSECV=0.01) using ANN-2 as input.【Conclusion】Both EWTC and FMCC can be accurately predicted from reflectance spectra. As a mass-based variable, FMCC can achieve higher estimation accuracy than the area-based variable EWTC through both PLSR and ANN methods. Plant mass may play a more significant role than plant area in determining spectral emissivity, indicating that fuel mass factors have a greater impact on the inversion of spectral reflectance moisture characteristics, while leaf area has a relatively smaller influence. Overall, the hyperspectral data of forest stand canopy obtained through field measurements are effective in estimating fuel moisture characteristic parameters, and can provide valuable support for forest fuel fire risk prediction, forecasting, and level assessment.

关键词

林分冠层 / 高光谱 / 可燃物含水率 / 等效水厚度 / 北亚热带

Key words

canopy / hyperspectral / fuel moisture content / equivalent water thickness / north subtropical zone

引用本文

导出引用
张水锋, 张金池, 张阳, . 基于高光谱的不同林分冠层可燃物水分特征研究[J]. 南京林业大学学报(自然科学版). 2025, 49(6): 238-246 https://doi.org/10.12302/j.issn.1000-2006.202411004
ZHANG Shuifeng, ZHANG Jinchi, ZHANG Yang, et al. Research on canopy water content of different forest stands based on hyperspectral analysis[J]. Journal of Nanjing Forestry University (Natural Sciences Edition). 2025, 49(6): 238-246 https://doi.org/10.12302/j.issn.1000-2006.202411004
中图分类号: S762   

参考文献

[1]
ANDREW S, ELAINE B, TIINA K. A UNEP rapid response assessment: spreading like wildfire-the rising threat of extraordinary landscape fires[R]. Nairobi: United Nations Environment Programme, 2022.
[2]
BOWMAN D M J S, BALCH J K, ARTAXO P. Fire in the earth system[J]. Science, 2009, 324(5926):481-484. DOI:10.1126/science.116388.
Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.
[3]
赵志霞, 李正才, 周君刚, 等. 火烧对北亚热带杉木林土壤有机碳的影响[J]. 林业科学研究, 2016, 29(2):301-305.
ZHAO Z X, LI Z C, ZHOU J G, et al. Effects of fire on soil organic carbon of Cunninghamia lanceolata stands in north subtropical area[J]. Forest Research, 2016, 29(2):301-305. DOI:10.13275/j.cnki.lykxyj.2016.02.024.
[4]
李史欣, 张福全, 林海峰. 基于机器学习算法的森林火灾风险评估研究[J]. 南京林业大学学报(自然科学版), 2023, 47(5):49-56.
摘要
【目的】 利用森林火灾风险图可提高有效巡护,优化有限防火资源,基于地形、人类活动、植被和气象因素数据,采用基于机器学习算法构建了林火发生预测模型,对林火防护提供一定的参考。【方法】 以安徽省滁州韭山为研究对象,提取林区的坡度、海拔、坡向、到居住点的距离、到道路的距离、地形湿度指数、归一化植被指数和温度驱动因素,评估火灾发生驱动因子,将潜在驱动因子分成地形、人类活动、植被与气象因素等4类;使用哨兵火灾产品,提取林区内的历史火点,然后采用机器学习算法建立林火发生的预测模型;最后利用混淆矩阵评估指标和接受者操作特征曲线(ROC)进行精度评价。【结果】 植被、温度和到道路的距离是研究区域火灾发生的主要驱动因素。两种模型的ROC曲线表明,逻辑回归预测模型准确度为71.07%,曲线下面积(AUC)值为0.717 2;随机森林模型具有较好的准确性,准确度达到84.91%,曲线下面积值为0.850 1。【结论】 随机森林模型表现出比逻辑回归模型更好的预测能力。森林火灾风险图表明,随机森林模型预测下,研究区11.91% (29.36 km<sup>2</sup>)位于高、极高风险级别。森林火灾风险图可有效协助林火防护管理者采取适当的林火预防措施,保护森林资源。
LI S X, ZHANG F Q, LIN H F. Research on forest fire risk evaluation based on machine learning algorithm[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2023, 47(5):49-56. DOI:10.12302/j.issn.1000-2006.202202004.
[5]
MILTON J E, SCHAEPMAN E M, ANDERSON K, et al. Progress in field spectroscopy[J]. Remote Sensing of Environment, 2009, 113: S92-S109. DOI:10.1016/j.rse.2007.08.001
[6]
MEINGAST M K, FALKOWSKI J M, KANE S E, et al. Spectral detection of near-surface moisture content and water-table position in northern peatland ecosystems[J]. Remote Sensing of Environment, 2014, 152: 536-546. DOI:10.1016/j.rse.2014.07.014
[7]
HE C M, SUN J, CHEN Y W, et al. PROSPECT-GPR: exploring spectral associations among vegetation traits in wavelength selection for leaf mass per area and water contents[J]. Science of Remote Sensing, 2023, 8: 100100. DOI: 10.1016/j.srs.2023.100100.
[8]
FENG S J, QIU J X, CROW T W, et al. Improved estimation of vegetation water content and its impact on L-band soil moisture retrieval over cropland[J]. Journal of Hydrology, 2023, 617: 129015. DOI:10.1016/j.jhydrol.2022.129015
[9]
MIRZAIE M, DARVISHZADEH R, SHAKIBA A, et al. Comparative analysis of different uni-and multi-variate methods for estimation of vegetation water content using hyper-spectral measurements[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 26: 1-11. DOI:10.1016/j.jag.2013.04.004
[10]
NEINAVAZ E, SKIDMORE K A, DARVISHZADEH R, et al. Retrieving vegetation canopy water content from hyperspectral thermal measurements[J]. Agricultural and Forest Meteorology, 2017, 247: 365-375. DOI:10.1016/j.agrformet.2017.08.020.
[11]
DONG G N, CHEN S H, LIU K, et al. Spatiotemporal variation in sensitivity of urban vegetation growth and greenness to vegetation water content: evidence from Chinese megacities[J]. Science of The Total Environment, 2023, 905: 1067090. DOI:10.1016/j.scitotenv.2023.167090.
[12]
CLAUDIO H C, CHENG Y, FUENTES D A, et al. Monitoring drought effects on vegetation water content and fluxes in chaparral with the 970 nm water band index[J]. Remote Sensing of Environment. 2006, 103(3):304-311. DOI:10.1016/j.rse.2005.07.015.
[13]
张玉春, 孔林毅, 郭瀚文, 等. 燃料载荷和含水率对平坡地表火蔓延影响实验研究[J]. 消防科学与技术, 2022, 41(2):261-265.
摘要
燃料载荷和含水率是森林火灾中地表火蔓延的重要影响因素。选取香樟叶和云南松松针作为研究对象,开展了不同燃料载荷和含水率条件下平坡地表火蔓延实验。研究结果表明:同一燃料载荷下,随含水率增大,火焰长度、火蔓延速率、火线强度和辐射热流减小,滞留时间增大;同一含水率下,燃料载荷增大,火焰长度、火蔓延速率、火线强度、辐射热流和滞留时间均增大。
ZHANG Y C, KONG L Y, GUO H W, et al. Experimental study on the effects of fuel load and water content on surface fire spread over flat fuel bed[J]. Fire Science and Technology, 2022, 41(2):261-265.DOI:10.3969/j.issn.1009-0029.2022.02.024.
Fuel load and water content are important factors affecting surface fire spread in forest fires.This work selected cinnamomumcamphora leaf and pine needle of pinusyunnanensis as the research object,carried out the fire spread experiment under flat slope conditions,with different fuel load and moisture content.It was observed that under the same fuel load condition,the flame length,the rate of spread,the fireline intensity and the radiative heat flux decreased with the increase of water content,while the residence time increased.Under the same moisture content condition,the flame length,the rate of spread,the fireline intensity,the radiative heat flux and the residence time increased with increasing fuel load.
[14]
XING W Q, YANG L L, WANG W G, et al. Environmental controls on carbon and water fluxes of a wheat-maize rotation cropland over the Huaibei Plain of China[J]. Agricultural Water Management, 2023, 283:108310. DOI:10.1016/j.agwat.2023.108310.
[15]
COLOMBO R, MERONI M, MARCHESI A, et al. Estimation of leaf and canopy water content in poplar plantations by means of hyperspectral indices and inverse modeling[J]. Remote Sensing of Environment, 2008. 112(4), 1820-1834. DOI:10.1016/j.rse.2007.09.005.
[16]
CHENG Y B, ZARCO-TEJADA P J, RIAÑO D, et al. Estimating vegetation water content with hyperspectral data for different canopy scenarios: relationships between AVIRIS and MODIS indexes[J]. Remote Sensing of Environment, 105(4):354-366. DOI:10.1016/j.rse.2006.07.005.
[17]
BUITRAGO M F, GROEN T A, HECKER C A, et al. Changes in thermal infrared spectra of plants caused by temperature and water stress[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 111:22-31. DOI:10.1016/j.isprsjprs.2015.11.003.
[18]
HUNT JR E R, USTIN S L, RIAÑO D. Remote sensing of leaf, canopy, and vegetation water contents for satellite environmental data records[A]// QU J, POWELL A, SIVAKUMAR M. Remote sensing of leaf, canopy, and vegetation water contents for satellite environmental data records[A]// QU J, POWELL A, SIVAKUMAR M. Satellite-based publications on climate change[M]. Berlin: Springer, 2013:335-357. DOI:10.1007/978-94-007-5872-8-20.
[19]
张佳华, 许云, 姚凤梅, 等. 植被含水量光学遥感估算方法研究进展[J]. 中国科学:技术科学, 2010, 40(10):1121-1129.
ZHANG J H, XU Y, YAO F M, et al. Advances in estimation methods of vegetation water content based on optical remote sensing techniques[J]. Scientia Sinica (Technologica), 2010, 40(10):1121-1129. DOI:10.1007/s11431-010-0131-3.
[20]
FAN L, WIGNERON J P, XIAO Q, et al. Evaluation of microwave remote sensing for monitoring live fuel moisture content in the Mediterranean region[J]. Remote Sensing of Environment, 2018, 205:210-223.DOI: 10.1016/j.rse.2017.11.020.
[21]
VIÑUALES A, MONTES F, GUIJARRO M, et al. Real-time assessment of live forest fuel moisture content and flammability by using space-time universal Kriging[J]. Ecological Modelling, 2024,498:110867.DOI: 10.1016/j.ecolmodel.2024.110867.
[22]
王希, 陈桂芬, 曹丽英, 等. 等效水厚度梯度的玉米叶片氮素反演模型研究[J]. 光谱学与光谱分析, 2022, 42(9):2913-2918.
WANG X, CHEN G F, CAO L Y, et al. Study on maize leaf nitrogen inversion model based on equivalent water thickness gradient[J]. Spectroscopy and Spectral Analysis,2022, 42(9):2913-2918.DOI: 10.3964/j.issn.1000-0593(2022)09-2913-06.
[23]
马岩川, 刘浩, 陈智芳, 等. 基于高光谱指数的棉花冠层等效水厚度估算[J]. 中国农业科学, 2019, 52(24):4470-4483.
摘要
【目的】建立快速、无损监测棉花冠层等效水厚度(canopy equivalent water thickness,CEWT)的估算模型,进一步提高利用高光谱遥感技术监测棉花CEWT的估算精度。【方法】通过在不同生育期设置灌溉梯度试验,于棉花蕾期和花铃期同步测定冠层光谱反射率、冠层等效水厚度等信息,综合分析棉花冠层等效水厚度与原始光谱反射率、一阶导数光谱反射率、全波段组合光谱指数、已有光谱指数的相关性,确定蕾期、花铃期及全生育期的最优光谱指数,并通过线性回归构建棉花CEWT的高光谱监测模型。【结果】冠层等效水厚度与原始光谱反射率在近红外波段(NIR)780—1 130 nm和短波红外波段(SWIR)1 450—1 830 nm、1 950—2 450 nm附近均出现连续的敏感波段,一阶导数光谱在NIR波段内对CEWT的敏感程度较原始光谱有所加强,但在SWIR波段内敏感程度弱于原始光谱;利用原始光谱反射率构建的光谱指数与CEWT的相关性强于一阶导数光谱,且比值光谱指数(RSI)较归一化差分光谱指数(NDSI)更适合CEWT的监测。在全生育期内(R<sub>1135</sub>-5R<sub>1494</sub>)/R<sub>2003</sub>对CEWT的反演精度最佳(R <sup>2</sup>=0.7878,RRMSE=0.1803);在蕾期RSI<sub>b</sub>(1130,1996)对CEWT的估算效果最好(R <sup>2</sup>=0.7258,RRMSE=0.1444);在花铃期RSI<sub>a</sub>(904,1952)是估算CEWT的最优光谱指数(R <sup>2</sup>=0.7853,RRMSE=0.2454)。【结论】该研究在不同生育阶段内提出的新型高光谱指数均可用于棉花冠层等效水厚度的定量监测,研究结果可为高光谱技术在棉花冠层水分含量监测中的应用提供参考,为棉花精准灌溉提供技术依据。
MA Y C, LIU H, CHEN Z F, et al. Canopy equivalent water thickness estimation of cotton based on hyperspectral index[J]. Scientia Agricultura Sinica, 2019, 52(24):4470-4483.DOI: 10.3864/j.issn.0578-1752.2019.24.003.

【Objective】 The objective of the experiments is to develop a key method for fast and nondestructive monitoring canopy equivalent water thickness (CEWT) in cotton (Lumian 54) and to further improve the estimation accuracy of CEWT in cotton monitored by remote sensing technology. 【Method】 Through setting irrigation gradient treatment in different growth period, canopy spectral reflectance and canopy equivalent water thickness and other information were measured simultaneously. Firstly, we comprehensively analyzed the correlation between CEWT and various spectral parameters, including original spectral reflectance, first derivative spectral reflectance, all-band combined spectral index and existing spectral index. Then, we determined the optimal spectral indices of bud stage, flowering and bolls stage, and full growth period. Finally, we constructed a hyperspectral monitoring model of cotton CEWT by linear regression. 【Result】 The canopy equivalent water thickness and the original spectral reflectance show continuous sensitive bands in the near infrared band (NIR) of 780-1130 nm and the short wave infrared band (SWIR) of 1 450-1 830 nm and 1 950-2 450 nm, the sensitivity of the first derivative spectrum to CEWT was enhanced in NIR band than that of the original spectrum, but was weaker in SWIR band than that of the original spectrum. The correlation between the spectral index constructed by the original spectral reflectance and CEWT is stronger than that of the first derivative spectrum, and the ratio spectral index (RSI) is more suitable for the monitoring of CEWT than the normalized difference spectral index (NDSI). During the whole growth period, the inversion accuracy of CEWT by (R1135-5R1494)/R2003 was the best (R 2=0.7878, RRMSE=0.1803). In the bud stage, RSIb(1130,1996) has the best estimation effect on CEWT (R 2=0.7258, RRMSE=0.1444). RSIa (904,1952) was the optimal spectral index (R 2=0.7853, RRMSE=0.2454) for estimating CEWT at the flowering and bolls stage.【Conclusion】The new hyperspectral indexes proposed in this study in different growth stages can be used for quantitative monitoring of canopy equivalent water thickness in cotton. The results of this study can provide reference for the application of hyperspectral technology in monitoring water content of cotton canopy, and provide technical basis for precision irrigation of cotton.

[24]
仝春艳, 马驿, 杨振忠, 等. 基于角度指数的油菜叶片等效水厚度估算研究[J]. 核农学报, 2019, 33(1):187-198.
摘要
叶片等效水厚度(EWT)是评估油菜生长状态的一个重要参数。为快速准确估算油菜叶片EWT,选择9个常用的植被水分指数(WI、PRI、NDVI、NDII、NDWI、MSI、PWI、GVMI、NDMI),在6个已有角度指数(&#x003b2;<sub>SWIR</sub><sub>1</sub>、SANI、SASI、ANIR、NANI、NASI)基础上,提出2种角度比值指数(SARI、NARI),并根据油菜叶片水吸收谷峰高光谱特征,提出基于水吸收谷1 450 nm和1 930 nm的8种改进型角度指数,利用以上25种角度指数估算不同施氮水平下苗期、蕾薹期以及不区分苗期、蕾薹期情况下的油菜叶片EWT。结果表明,苗期ANI<sub>1450</sub>、ASI<sub>1450</sub>、MSI、GVMI、NDII估算效果较好,R<sup>2</sup>均达到0.81以上;蕾薹期ANI<sub>1930</sub>、ASI<sub>1930</sub>、NASI、SANI、GVMI、SARI效果最好,R<sup>2</sup>均达到0.71以上;在不区分苗期、蕾薹期的情况下,改进型角度指数ANI<sub>1450</sub>、ASI<sub>1450</sub>效果最好,R<sup>2</sup>均达到0.832,可以在不区分苗期、蕾薹期情况下对油菜叶片EWT进行估算,适用性更广。本研究提出的改进型角度指数不仅丰富了已有角度指数,且提高了其反演油菜叶片EWT的精度,为快速精确估计油菜叶片EWT提供了新的研究思路。
TONG C Y, MA Y, YANG Z Z, et al. Estimation of equivalent water thickness of rapeseed leaves based on angle index[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(1):187-198.DOI: 10.11869/j.issn.100-8551.2019.01.0187.
Leaf equivalent water thickness (EWT) is an important parameter to evaluate the growth state of rapeseed. To estimate EWT of rapeseed leaves quickly and accurately, 9 commonly used vegetation water indices (WI, PRI, NDVI, NDII, NDWI, MSI, PWI, GVMI, NDMI) are selected, and two kinds of angle ratio indices (SARI, NARI) are proposed based on the six existing angle indices (&#x003b2;<sub>SWIR1</sub>, SANI, SASI, ANIR, NANI, NASI). According to the hyperspectral characteristics of the water absorption valleys and peaks of rapeseed, 8 improved angle indices are brought forward based on water absorption valley at the wavelengths of 1450 nm and 1930 nm. The above 25 angel indices are used to estimate leaf EWT of rapeseed under different nitrogen levels at the seeding stage, bud stage and without distinguishing between seedling stage and bud stage. The results show that ANI<sub>1450</sub>, ASI<sub>1450</sub>, MSI, GVMI and NDII performed better at the seeding stage, and their <em>R</em><sup>2</sup> both achieved 0.81 or above. ANI<sub>1930</sub>, ASI<sub>1930</sub>, NASI, SANI, GVMI and SARI are the best at the bud stage as their <em>R</em><sup>2</sup> are all larger than 0.71. Improved angle indices ANI<sub>1450</sub> and ASI<sub>1450</sub> have the best effect, with their <em>R</em><sup>2</sup> at 0.832, which can be used to estimate the EWT of rapeseed leaves without distinguishing between seedling stage and bud stage, and the applicability is wider. The improved angle indices in this research can not only enrich the existing angle indices, but also improve the accuracy of rapeseed leaf EWT inversion. Moreover, the indices provide a new idea for estimation of rapeseed leaves EWT instantly and precisely.
[25]
闻宏睿, 国巧真, 魏书精, 等. 基于PROSAIL模型的广州市过渡带森林植被冠层可燃物含水率估算[J]. 热带地理, 2023, 43(3):545-553.
摘要
基于PROSAIL模型,结合野外实测叶片等水分厚度、干物质重量、叶面积指数数据,构建一种基于归一化红外指数和归一化干物质指数的植被冠层可燃物含水率估算方法。首先,在PROSAIL模型输入实测参数模拟植被冠层光谱曲线,计算归一化红外指数、归一化干物质指数用于叶片等水分厚度、干物质重量的反演。结果表明:归一化红外指数与叶片等水分厚度、归一化干物质指数与干物质重量存在明显的线性关系,基于该关系建立叶片等水分厚度、干物质重量的经验估算模型,经验证估算结果精度较高;将该经验模型推广至利用Landsat 8数据拟合植被冠层可燃物含水率,并与实测数据进行验证,结果显示R2达到0.743,RMSE达到34.2%,具有较高的精度。文章提出的植被冠层可燃物含水率估算模型,可实现广州市过渡带森林大面积、较高精度植被冠层可燃物含水率监测,为预防森林火灾提供参考。
WEN H R, GUO Q Z, WEI S J, et al. Estimation of fuel water content in the forest ecotone of Guangzhou based on the PROSAIL model[J]. Tropical Geography, 2023, 43(3):545-553.DOI: 10.13284/j.cnki.rddl.003648.

Fuel moisture content (FMC), which is the ratio of equivalent water thickness (EWT) to dry matter content (DMC), plays a crucial role in the estimation of vegetation ignition probability and the fire propagation rate. The PROSAIL model can adequately simulate the canopy reflectance of vegetation, with the input of field-measured data into the model ensuring conformity with the ecological rules. If the EWT and DMC can be estimated by an empirical statistical method according to the reflectance spectrum, the universality of the physical model and the efficiency of the empirical statistical method can be considered. In this study, a fast and versatile method is established for estimating FMC based on the EWT, DMC, leaf area index measured data, and the PROSAIL model. The Normalized Difference Infrared Index (NDII) and Normalized Dry Matter Index (NDMI) were obtained from the spectral curves, with the results showing an obvious linear relationship between the NDII and EWT, NDMI, and DMC. Therefore, EWT and DMC can be estimated using the NDII and NDMI. The accuracy of the estimation results is verified to be high. The estimation model can be extended to Landsat 8 data to estimate FMC. The estimated FMC data verified by the measured data showed that R2 was 0.743 and the RMSE was 34.2%. The model accuracy was reliable owing to large dynamic changes in the FMC. However, the estimated value of the FMC shifted significantly to the left during this study. The reasons for this are as follows: 1) The field-measured points are not sufficient to support the analysis according to different vegetation types, and the physical and chemical properties of different types are varied, leading to altered simulated spectral curves; 2) The vegetation spectrum is sensitive to the DMC at 1,650 nm, 1,720 nm, and 2,270 nm bands, and the sensitivity near the 1,650 nm and 1,720 nm bands is greater than that at 2,270 nm. However, because the Landsat 8 image does not have a 1,720 nm band, the 2,270 nm band was selected to calculate the NDMI, making the value of the estimated DMC too large, resulting in a small value of the estimated FMC and a significant shift to the left; 3) 1,650 nm and 2,270 nm are not in the central wavelength of the two bands of Landsat 8; therefore, the estimated DMC and FMC are shifted. In addition, the fast and versatile method, which is established based on the EWT, DMC, leaf area index measured data and the PROSAIL model, can realize large-scale and high-precision monitoring of the FMC, providing a scientific reference for forest fire prevention.

[26]
全兴文, 何彬彬, 刘向茁, 等. 多模型耦合下的植被冠层可燃物含水率遥感反演[J]. 遥感学报, 2019, 23(1):62-77.
QUAN X W, HE B B, LIU X Z, et al. Retrieval of fuel moisture content by using radiative transfer models from optical remote sensing data[J]. Journal of Remote Sensing, 2019, 23(1):62-77. DOI: 10.11834/jrs.20197422.
[27]
沙莎, 胡蝶, 王丽娟, 等. 基于Landsat 8 OLI数据的黄土高原植被含水量的估算模型研究[J]. 遥感技术与应用, 2016, 31(3):558-563.
摘要
植被含水量(VWC)能够指示植被的水分状况,对植被生长、火灾、旱灾以及生态环境安全监测等具有重要意义,也是微波遥感估算土壤水分的重要参数之一.光谱指数法是估算植被含水量最常用的方法之一.结合地面观测及Landsat8OLI传感器遥感影像,对平凉地区的植被含水量进行了遥感估算模型研究,结果表明:①平凉地区叶片含水量(FMC)与植被光谱指数没有相关关系,而等效水深(EWT)则与各植被光谱指数具有显著的相关关系(均超过95%显著性水平),其中RVI2与EWT的相关关系最显著且最稳定;②利用RVI2对研究区EWT进行遥感估算,其均方根误差(RMSE)为0.183,平均相对误差为8.9%,平均相对误差绝对值为26.4%;③研究区内大部分农田的植被含水量为0.6~0.9kg/m2,少数农田的植被含水量达到1kg/m2 以上,这与实际考查基本一致,基本能够反映研究区内农田EWT的空间变化特征.
SHA S, HU D, WANG L J, et al. Vegetation water content retrieved using Landsat 8 OLI remote sensing data on Loess Plateau[J]. Remote Sensing Technology and Application, 2016, 31(3):558-563.DOI: 10.11873/j.issn.1004-03232016.3.0558.
[28]
冯小兵, 曾宇怀, 吴泽鹏, 等. 基于卫星多光谱的广东亚热带森林FMC遥感反演[J]. 电子科技大学学报, 2022, 51(3):432-437.
FENG X B, ZENG Y H, WU Z P, et al. Remote sensing retrieval of FMC in subtropical forests of Guangdong based on satellite multispectral data[J]. Journal of University of Electronic Science and Technology of China, 2022, 51(3):432-437.DOI: 10.12178/1001-0548.2021361.
[29]
张水锋, 彭徐剑, 张思玉. 火干扰对人工林土壤团聚体结构稳定性的影响[J]. 西南林业大学学报(自然科学), 2023, 43(3):103-110.
ZHANG S F, PENG X J, ZHANG S Y. Effects of fire disturbance on the structural stability of plantation soil aggregates[J]. Journal of Southwest Forestry University (Natural Sciences Edition), 2023, 43(3):103-110. DOI: 10.11929/j.swfu.202203061.
[30]
江津凡, 万福绪, 孙祥. 苏北防火林带8种主要树种抗火能力的分析[J]. 南京林业大学学报(自然科学版), 2012, 36(2):151-154.
摘要
为了筛选苏北丘陵区防火林带树种,以盱眙防火林带的建设为例,通过锥形量热仪对防火林带香樟、女贞、侧柏、广玉兰、杨树、海桐、油茶和淡竹等8种常见树种枝叶的16种指标进行了测定,并应用因子分析方法进行统计分析,得出了8种树种的抗火性差异,其由强到弱依次为广玉兰、杨树、女贞、油茶、侧柏、海桐、淡竹和香樟。
JIANG J F, WAN F X, SUN X. J. Analysis of 8 fire resistance tree species of fire-preventing forest belts in Xuyi County, China[J]. Journal of Nanjing Forestry University (Natural Sciences Edition) 2012, 36(2):151-154.DOI:10.3969/j.issn.1000-2006.2012.02.031.
[31]
侯继萍, 芦建国, 余义亮, 等. 紫金山登山道主要树种抗火性研究[J]. 火灾科学, 2020, 29(2):106-114.
HOU J P, LU J G, YU Y L, et al. Study on fire resistance of main tree species on hiking trail in Zijin Mountain[J]. Fire Safety Science, 2020, 29(2):106-114.DOI: 10.3969/j.issn.1004-5309.2020.02.05.
[32]
戴春霞, 刘芳, 葛晓峰. 基于高光谱技术的茶鲜叶含水率检测与分析[J]. 茶叶科学, 2018, 38(3):281-286.
DAI C X, LIU F, GE X F. Detection and analysis of moisture content in fresh tea leaves based on hyperspectral technology[J]. Journal of Tea Science, 2018, 38(3):281-286.DOI: 10.13305/j.cnki.jts.2018.03.008.
[33]
ABDEL-RAHMAN E M, MUTANGA O, ODINDI J, et al. A comparison of partial least squares (PLS) and sparse PLS regressions for predicting yield of Swiss chard grown under different irrigation water sources using hyperspectral data[J]. Computers and Electronics in Agriculture, 2014, 106:11-19.DOI: 10.1016/j.compag.2014.05.001.
[34]
NEINAVAZ E, SKIDMORE A K, DARVISHZADEH R, et al. Retrieval of leaf area index in different plant species using thermal hyperspectral data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119:390-401.DOI: 10.1016/j.isprsjprs.2016.07.001.
[35]
TROMBETTI M, RIAÑO D, RUBIO M A, et al. Multi-temporal vegetation canopy water content retrieval and interpretation using artificial neural networks for the continental USA[J]. Remote Sensing of Environment, 2008, 112(1):203-215.DOI: 10.1016/j.rse.2007.04.013.

基金

中央高校基本科研业务费重点项目(LGZD201906)
国家重点研发计划(2023YFC3304000)
江苏高校“青蓝工程”
国家自然科学基金面上项目(31872705)
江苏省社会科学基金项目(22GLD011)

编辑: 孟苗婧
PDF(2268 KB)

Accesses

Citation

Detail

段落导航
相关文章

/