氮素形态对薄壳山核桃生长生理特性的影响

乔振兵, 谌梦云, 朱嘉驹, 卢龙涛, 朱凯凯, 谭鹏鹏, 彭方仁

南京林业大学学报(自然科学版) ›› 2026, Vol. 50 ›› Issue (1) : 160-169.

PDF(1971 KB)
PDF(1971 KB)
南京林业大学学报(自然科学版) ›› 2026, Vol. 50 ›› Issue (1) : 160-169. DOI: 10.12302/j.issn.1000-2006.202411014
研究论文

氮素形态对薄壳山核桃生长生理特性的影响

作者信息 +

Effects of different nitrogen forms on the growth and physiological characteristics of Carya illinoensis

Author information +
文章历史 +

摘要

【目的】 铵态氮(NH4+-N)和硝态氮(NO3--N)是植物吸收的两种主要无机氮形态,在植物的生长发育中起到重要作用。筛选薄壳山核桃(Carya illinoinensis)生长的最适氮素形态配比,可以为提高薄壳山核桃氮素利用效率提供理论依据。【方法】以14年生薄壳山核桃品种‘波尼’(‘Pawnee’)为试验材料,设置6个处理: NO3--N和NH4+-N质量比分别为100∶0(T1)、72∶25(T2)、50∶50(T3)、25∶75(T4)、0∶100(T5)和不施氮肥作为对照(CK)。通过对氮素形态处理下的薄壳山核桃生长生理特性进行方差分析、相关性分析以及主成分分析,初步确定了最佳的氮素形态配比。【结果】T2处理显著提高薄壳山核桃叶片叶绿素a、b和总叶绿素含量、种仁游离氨基酸含量和粗脂肪含量;在T3处理下薄壳山核桃树高和胸径生长量显著提高,根和种仁铵态氮含量显著降低,而叶片中铵态氮含量显著提高;T4处理显著提高薄壳山核桃根和叶片的可溶性糖含量、根和种仁的可溶性蛋白含量以及游离氨基酸含量;T5处理显著提高了种仁中的可溶性糖含量。相关性分析结果表明,薄壳山核桃绝大多数指标间存在正相关关系。主成分分析及综合评价结果发现,T4处理最有利于促进薄壳山核桃的生长发育。【结论】通过对氮素形态配比处理下的薄壳山核桃进行生长生理特性分析、相关性分析及主成分分析,发现T4处理对薄壳山核桃的生长发育促进效果最佳,这为提高薄壳山核桃氮素利用效率提供了理论基础。

Abstract

【Objective】 Ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) are the two primary inorganic nitrogen forms absorbed by plants and play crucial roles in plant growth and development. Screening the optimal nitrogen form ratio for pecan (Carya illinoinensis) growth can provide a theoretical basis for improving its nitrogen use efficiency.【Method】The experiment used 14-year-old pecan trees of the C. illinoinensis ‘Pawnee’ cultivar as plant materials. Six treatments were established with NO3--N to NH4+-N mass ratios of 100∶0 (T1), 72∶25 (T2), 50∶50 (T3), 25∶75 (T4), 0∶100 (T5), and a no-nitrogen fertilizer control (CK). Variance analysis, correlation analysis, and principal component analysis were conducted on the growth and physiological characteristics of pecan under different nitrogen form treatments to preliminarily determine the optimal nitrogen form ratio.【Result】The results showed that the T2 treatment significantly increased the contents of chlorophyll a, chlorophyll b, and total chlorophyll in pecan leaves, as well as the free amino acid and crude fat contents in the kernels. Under T3 treatment, tree height and diameter at breast height growth were significantly enhanced, ammonium nitrogen content in roots and kernels was significantly reduced, while ammonium nitrogen content in leaves was significantly increased. T4 treatment significantly increased the soluble sugar content in roots and leaves, as well as the soluble protein and free amino acid contents in both roots and kernels. The T5 treatment significantly increased the soluble sugar content in the kernels. Correlation analysis indicated positive relationships between the majority of the measured parameters in pecan. Principal component analysis and comprehensive evaluation revealed that the T4 treatment was most conducive to promoting the growth and development of pecan. 【Conclusion】Through the analysis of growth and physiological characteristics, correlation analysis, and principal component analysis of pecan under different nitrogen form ratio treatments, it was found that the T4 treatment had the best promoting effect on the growth and development of pecan. This provides a theoretical foundation for improving nitrogen use efficiency in pecan.

关键词

薄壳山核桃 / 氮素形态 / 生长和生理特性 / 氮素利用效率

Key words

Carya illinoensis(pecan) / nitrogen forms / growth and physiological characteristics / nitrogen use efficiency

引用本文

导出引用
乔振兵, 谌梦云, 朱嘉驹, . 氮素形态对薄壳山核桃生长生理特性的影响[J]. 南京林业大学学报(自然科学版). 2026, 50(1): 160-169 https://doi.org/10.12302/j.issn.1000-2006.202411014
QIAO Zhenbing, CHEN Mengyun, ZHU Jiaju, et al. Effects of different nitrogen forms on the growth and physiological characteristics of Carya illinoensis[J]. Journal of Nanjing Forestry University (Natural Sciences Edition). 2026, 50(1): 160-169 https://doi.org/10.12302/j.issn.1000-2006.202411014
中图分类号: S794   

参考文献

[1]
KING D J, HARLEY G L, MAXWELL J T, et al. Floodplain forest structure and the recent decline of Carya illinoinensis (Wangenh.) K. Koch (northern pecan) at its northern latitudinal range margin, Upper Mississippi River System, USA[J]. Forest Ecology Manage, 2021, 496: 119454. DOI:10.1016/j.foreco.2021.119454.
[2]
赵喆, 王菲, 胡甜, 等. 薄壳山核桃脂肪酸研究进展[J]. 食品科技, 2023, 48(2): 173-178.
ZHAO Z, WANG F, HU T, et al. Research progress on fatty acids of Carya illinoinensis[J]. Food Science and Technology, 2023, 48(2): 173-178. DOI:10.13684/j.cnki.spkj.2023.02.010.
[3]
黄梅, 任华东, 姚小华, 等. 薄壳山核桃主要生物活性成分及其作用研究进展[J]. 中国油脂, 2023, 48(6): 99-104.
HUANG M, REN H D, YAO X H, et al. Advances in studies on main bioactive components and their effects of pecans[J]. China Oils and Fats, 2023, 48(6): 99-104. DOI:10.19902/j.cnki.zgyz.1003-7969.220094.
[4]
周樊, 陈文静, 曹凡, 等. 配比施肥对薄壳山核桃幼苗生长和生理特性的影响[J]. 中南林业科技大学学报, 2020, 40(9): 96-103.
ZHOU F, CHEN W J, CAO F, et al. Effects of fertilization on growth and physiological characteristics of pecan seedlings[J]. Journal of Central South University of Forestry & Technology, 2020, 40(9): 96-103. DOI:10.14067/j.cnki.1673-923x.2020.09.011.
[5]
SHEN H, GAO Y, SUN K, et al. Effects of differential irrigation and nitrogen reduction replacement on winter wheat yield and water productivity and nitrogen-use efficiency[J]. Agricultural Water Management, 2023, 282: 108289. DOI:10.1016/j.agwat.2023.108289.
[6]
吕浩楠, 周晓嘉, 吴金鹏, 等. 控释氮肥在稻麦轮作体系上应用的研究进展[J]. 山东农业大学学报(自然科学版), 2023, 54(6): 923-929.
LV H N, ZHOU X J, WU J P, et al. Progress on the application of controlled release fertilizer in rice-wheat rotation[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2023, 54(6): 923-929. DOI:10.3969/j.issn.1000-2324.2023.06.017.
[7]
杨林森. 薄壳山核桃容器播种苗培育关键技术研究[D]. 合肥: 安徽农业大学, 2024.
YANG L S. The key technology of cultivation for the container seedling of Carya illinoinensis[D]. Hefei: Anhui Agricultural University, 2024. DOI:10.26919/d.cnki.gannu.2022.001004.
[8]
杨学峰. 施肥对薄壳山核桃幼苗生长的影响[J]. 安徽林业科技, 2022, 48(1): 21-24.
YANG X F. Effects of fertilization on the growth of Carya illinoensis young trees[J]. Anhui Forestry Science and Technology, 2022, 48(1): 21-24. DOI:10.3969/j.issn.2095-0152.2022.01.006.
[9]
TONG Y, WANG Z, GONG D, et al. Enhancing soil fertility and elevating pecan fruit quality through combined chemical and organic fertilization practices[J]. Horticulturae, 2023, 10(1):1121-1135. DOI:10.3390/horticulturae10010025.
[10]
杜洋文, 邓先珍, 程军勇. 不同尿素施肥量对薄壳山核桃嫁接苗光合作用日变化的影响[J]. 中南林业科技大学学报, 2022, 42(1): 27-35.
DU Y W, DENG X Z, CHENG J Y. Effects of different urea fertilization on diurnal changes of photosynthesisof grafted Carya illinoensis seedlings[J]. Journal of Central South University of Forestry & Technology, 2022, 42(1): 27-35. DOI:10.14067/j.cnki.1673-923x.2022.01.004.
[11]
邹英武, 杜洋文, 黄发新, 等. 不同氮肥浓度对薄壳山核桃苗木光合特性影响[J]. 湖北林业科技, 2021, 50(5): 1-7.
ZOU Y W, DU Y W, HUANG F X, et al. Effects of Different fertilizing concentrations on photosynthetic traits of Carya illinoensis seedlings[J]. Hubei Forestry Science and Technology, 2021, 50(5): 1-7. DOI:10.3969/j.issn.1004-3020.2021.05.002.
[12]
冯英, 赵悦竹, 戚晶, 等. 氮、磷、钾优化配比在薄壳山核桃果实及叶片中分配效应研究[J]. 安徽农业大学学报, 2023, 50(5): 798-801.
FENG Y, ZHAO Y Z, QI J, et al. Study on the allocation effect of optimized nitrogen, phosphorus, and potassium ratios in fruits and leaves of Carya illinoinensis[J]. Journal of Anhui Agricultural University, 2023, 50(5): 798-801. DOI:10.13610/j.cnki.1672-352x.20231030.002.
[13]
周米生, 王陆军, 肖正东, 等. 叶面肥对薄壳山核桃幼苗生长的影响[J]. 陕西农业科学, 2021, 67(7): 51-56.
ZHOU M S, WANG L J, XIAO Z D, et al. Effects of foliar fertilizer on the growth of Carya illinoinensis seedlings[J]. Shaanxi Agricultural Sciences, 2021, 67(7): 51-56. DOI:10.3969/j.issn.0488-5368.2021.07.012.
[14]
尚杨娟, 谭鹏鹏, 范平桦, 等. 薄壳山核桃叶面喷锌效果的评价[J]. 浙江农林大学学报, 2020, 37(6): 1071-1079.
SHANG Y J, TAN P P, FAN P H, et al. Evaluation of the effect of foliar zinc spray on Carya illinoinensis[J]. Journal of Zhejiang A&F University, 2020, 37(6): 1071-1079. DOI:10.11833/j.issn.2095-0756.20190687.
[15]
沈超. 氮钾对薄壳山核桃幼苗生理生化特性的影响[D]. 杭州: 浙江农林大学, 2018.
SHEN C. Effects of nitrogen and potassium on physiological and biochemical characteristics of Carya illinoinensis seedlings[D]. Hangzhou: Zhejiang A&F University, 2018.
[16]
QIN J, YUE X, SHANG X, et al. Response of nitrogen use efficiency, N-assimilating enzymes and growth in Cyclocarya paliurus seedlings to different nitrogen nutrition[J]. Journal of Plant Nutrition, 2023, 46(14): 3547-3556. DOI:10.1080/01904167.2023.2206843.
[17]
郑天晨. 氮供应及氮形态对油松幼苗生长的影响[D]. 沈阳: 沈阳农业大学, 2023.
ZHENG T C. Effects of nitrogen supply and nitrogen forms on the growth of Pinus tabuliformis seedling[D]. Shenyang: Shenyang Agricultural University, 2023. DOI:10.27327/d.cnki.gshnu.2023.000230.
[18]
陈昕钰. 小麦根系的生长发育及其对氮素和干旱的响应机理研究[D]. 扬州: 扬州大学, 2024.
CHEN X Y. Study on the growth and development of wheat roots and its response mechanisms to nitrogen and drought[D]. Yangzhou: Yangzhou University, 2024. DOI:10.27441/d.cnki.gyzdu.2023.000054.
[19]
XU G, FAN X, MILLER A J. Plant nitrogen assimilation and use efficiency[J]. Annu Rev Plant Biol, 2012, 63: 153-182. DOI:10.1146/annurev-arplant-042811-105532.
[20]
段永康. 黑莓氮素形态偏好性及其相关机理研究[D]. 南京: 南京林业大学, 2024.
DUAN Y K. Nitrogen form preference and related mechanism of blackberry abstract[D]. Nanjing: Nanjing Forestry University, 2024. DOI:10.27242/d.cnki.gnjlu.2023.000243.
[21]
薛泽政. 氮素形态对核桃幼苗生长特性的影响[D]. 乌鲁木齐: 新疆农业大学, 2022.
XUE Z Z. Effects of nitrogen forms on growth characteristics of walnut seedlings[D]. Urumqi: Xinjiang Agricultural University, 2022. DOI:10.27431/d.cnki.gxnyu.2020.000559.
[22]
闫小莉, 胡文佳, 马远帆, 等. 异质性供氮环境下杉木、马尾松、木荷氮素吸收偏好及其根系觅氮策略[J]. 林业科学, 2020, 56(2): 1-11.
YAN X L, HU W J, MA Y F, et al. Nitrogen uptake preference of Cunninghamia lanceolata, Pinus massoniana,and Schima superba under heterogeneous nitrogen supply environment and their root foraging strategies[J]. Scientia Silvae Sinicae, 2020, 56(2): 1-11. DOI:10.11707/j.1001-7488.20200201.
[23]
SERNA M D, LEGAZ F, PRIMO-MILLO E. Improvement of the N fertilizer efficiency with dicyandiamide (dcd) in citrus trees[J]. Fertilizers Research, 1995, 43(1): 137-142. DOI:10.1007/BF00747693.
[24]
王华顺, 张玲芳, 刘华银, 等. 串联索氏提取法快速测定烟草种子中油脂含量研究[J]. 云南民族大学学报(自然科学版), 2025, 34(1): 1-8.
WANG H S, ZHANG L F, LIU H Y, et al. Rapid determination of oil content in tobacco seeds by serial soxhlet extraction[J]. Journal of Yunnan Nationalities University (Natural Sciences Edition), 2025, 34(1): 1-8.
[25]
罗学平, 李腊, 张丽, 等. 乙醇浸泡法测定绿茶叶绿素含量的试验研究[J]. 现代食品, 2023, 29(1): 148-154.
LUO X P, LI L, ZHANG L, et al. Experimental study on determination of chlorophyll content in green tea by ethanol soaking[J]. Modern Food, 2023, 29(1): 148-154. DOI:10.16736/j.cnki.cn41-1434/ts.2023.01.040.
[26]
张述伟, 宗营杰, 方春燕, 等. 蒽酮比色法快速测定大麦叶片中可溶性糖含量的优化[J]. 食品研究与开发, 2020, 41(7): 196-200.
ZHANG S W, ZONG Y J, FANG C Y, et al. Optimization of anthrone colorimetric method for rapid determination of soluble sugar in barley leaves[J]. Food Research and Development, 2020, 41(7): 196-200. DOI:10.12161/j.issn.1005-6521.2020.07.033.
[27]
焦洁. 考马斯亮蓝G-250染色法测定苜蓿中可溶性蛋白含量[J]. 农业工程技术, 2016, 36(17): 33-34.
JIAO J. Determination of protein contents from Medicago sativa using coomassie brilliant blue G-250 Dyeing[J]. Agricultural Engineering Technology, 2016, 36(17): 33-34. DOI:10.16815/j.cnki.11-5436/s.2016.17.023.
[28]
吴有勤. 氮素形态对樟树幼苗生长及光合生理特性的影响[J]. 陕西林业科技, 2024, 52(2): 21-25.
WU Y Q. Effects of micro-fertilizer on growth and photosynthetic physiological effects of Castanopsis hystrix seedlings[J]. Shaanxi Forest Science and Technology, 2024, 52(2): 21-25. DOI:10.3969/j.issn.1001-2117.2024.02.004.
[29]
YONG S, CHEN Q, XU F, et al. Exploring the interplay between angiosperm chlorophyll metabolism and environmental factors[J]. Planta, 2024, 260(1): 25. DOI:10.1007/s00425-024-04437-8.
[30]
蔡东升, 杨文洁, 段伊佩, 等. 不同氮素形态及配比对番茄幼苗生长和生理特性的影响[J]. 江苏农业科学, 2023, 51(16): 113-118.
CAI D S, YANG W J, DUAN Y P, et al. Effects of different nitrogen forms and proportions on growth and physiological characteristics of tomato seedlings[J]. Jiangsu Agricultural Sciences, 2023, 51(16): 113-118. DOI:10.15889/j.issn.1002-1302.2023.16.016.
[31]
马超, 李雪, 马瑞杰, 等. 铵硝配比对樱桃番茄生长发育、产量、品质及氮素吸收的影响[J]. 中国瓜菜, 2024, 37(3): 121-127.
MA C, LI X, MA R J, et al. Effects of ammonium and nitrate ratio on growth, yield, quality and nitrogen uptake of cherry tomato[J]. China Cucurbits and Vegetables, 2024, 37(3): 121-127. DOI:10.16861/j.cnki.zggc.202423.0316.
[32]
王瑞. 氮素对油茶苗木生长的影响研究[D]. 长沙: 中南林业科技大学, 2021.
WANG R. Effects of nitrogen application on seedling growth Camellia oleifera Abel[D]. Changsha: Central South University of Forestry and Technology, 2021. DOI:10.27662/d.cnki.gznlc.2021.000003.
[33]
沈谦, 梁正川, 余泽岑, 等. 不同施氮水平对桑树幼苗非结构性碳水化合物及其抗旱能力的影响[J]. 西北农业学报, 2023, 32(3): 402-410.
SHEN Q, LIANG Z C, YU Z C, et al. Effects of different nitrogen application levels on non-structural carbohydrates and drought resistance of Morus alba[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2023, 32(3): 402-410. DOI:10.7606/j.issn.1004-1389.2023.03.008.
[34]
郝凯, 贾立国, 秦永林, 等. 氮素对马铃薯源-库关系影响研究进展[J]. 作物杂志, 2020(3): 22-26.
HAO K, JIA L G, QIN Y L, et al. Research progress about nitrogen effects on potato source-sink relationship[J]. Crops, 2020(3): 22-26. DOI:10.16035/j.issn.1001-7283.2020.03.004.
[35]
高俊飞. 不同施肥配方对榉树幼苗生长和生理的影响[D]. 南京: 南京林业大学, 2014.
GAO J F. Effects of different fertilization on the growth and physiology of Zelkova schneideriana seedlings[D]. Nanjing: Nanjing Forestry University, 2014.
[36]
花蕊, 郁万文, 李婷婷, 等. 硝铵配比对银杏苗生长和叶品质及产量的影响[J]. 经济林研究, 2021, 39(3): 1-9.
HUA R, YU W W, LI T T, et al. Effect of ammonium nitrate ratios on the growth and leaf quality and yield of Ginkgo biloba seedlings[J]. Non-wood Forest Research, 2021, 39(3): 1-9. DOI:10.14067/j.cnki.1003-8981.2021.03.001.
[37]
马秀玲, 蒋与刚. 精氨酸和一氧化氮合成的关系及其在免疫调节中的作用[J]. 氨基酸和生物资源, 2002(1): 46-50.
MA X L, JIANG Y G. Relationship between arginine and nitric oxide synthesis and its role in immune regulation[J]. Biotic Resources, 2002(1): 46-50. DOI:10.3969/j.issn.1006-8376.2002.01.018.
[38]
汪建飞, 董彩霞, 沈其荣. 氮素不同形态配比对菠菜体内游离氨基酸含量和相关酶活性的影响[J]. 植物营养与肥料学报, 2007(4): 664-670.
WANG J F, DONG C X, SHEN Q R. Effect of NH4+-N/NO3+-N ratios on the free amino acids and three kinds of enzymes of nitrogen metabolism in spinach (Spinacia oleracea L.) shoot[J]. Journal of Plant Nutrition and Fertilizers, 2007(4): 664-670. DOI:10.3321/j.issn:1008-505X.2007.04.020.
[39]
许如意, 别之龙, 黄丹枫. 不同氮素形态配比对网纹甜瓜干物质分配和氮代谢的影响[J]. 农业工程学报, 2005(S2): 147-150.
XU R Y, BIE Z L, HUANG D F. Effects of different nitrogen forms on the dry matter accumulation and leaf nitrogen metabolism of muskmelon[J]. Transactions of the Chinese Society of Agricultural Engineering, 2005(S2): 147-150. DOI:10.3321/j.issn:1002-6819.2005.z2.037.
[40]
梁娟, 叶漪, 杨伟. 不同氮素形态及配比对天门冬生长和品质的影响[J]. 中国土壤与肥料, 2018(1): 28-31.
LIANG J, YE Y, YANG W. Effects of different nitrogen form ratios on growth and quality of Asparagus cochinchinensis (Lour.) Merr[J]. Soil and Fertilizer Sciences in China, 2018(1): 28-31. DOI:10.11838/sfsc.20180105.
[41]
郭华. 铵态氮和硝态氮对矮牵牛生长发育及花瓣氨基酸代谢的影响[D]. 泰安: 山东农业大学, 2022.
GUO H. Effects of ammonium and nitrate on plant growth and petal amino acid biosynthesis in Petunia mitchell[D]. Taian: Shandong Agricultural University, 2022. DOI:10.27277/d.cnki.gsdnu.2022.001056.
[42]
徐新娟. 氮素形态对番茄果实生长和有机酸代谢动态变化的影响[D]. 南京: 南京农业大学, 2011.
XU X J. Effects of nitrogen forms on the dynamic changes of growth and organic acid metabolism in tomato fruit[D]. Nanjing: Nanjing Agricultural University, 2011.
[43]
刘威, 刘旭, 蔡卫佳, 等. 六个薄壳山核桃单株果实脂肪酸组成和营养成分比较分析[J]. 北方园艺, 2022(23): 46-53.
LIU W, LIU X, CAI W J, et al. Comparative analysis of fatty acid composition and nutritional components of six individuals of Carya illinoensis[J]. Northern Horticulture, 2022(23): 46-53. DOI:10.11937/bfyy.20221175.
[44]
CHEN M, ZHU K, TAN P, et al. Ammonia-nitrate mixture dominated by NH4+-N promoted growth, photosynthesis and nutrient accumulation in pecan (Carya illinoinensis)[J]. Forests, 2021, 12(12): 1808. DOI:10.3390/f12121808.

基金

林业和草原科技成果国家级推广项目(2023133126)

责任编辑: 李燕文
PDF(1971 KB)

Accesses

Citation

Detail

段落导航
相关文章

/