转录因子等在植物体胚发生中的作用机制

张稼霁, 郝兆东, 鲁路, 郑仁华, 施季森, 陈金慧

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (4) : 46-56.

PDF(1633 KB)
PDF(1633 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (4) : 46-56. DOI: 10.12302/j.issn.1000-2006.202412025
专题报道Ⅱ:发展林业新质生产力系列专题一:林木体细胞胚胎发生专题(执行主编 尹佟明 陈金慧 施季森)

转录因子等在植物体胚发生中的作用机制

作者信息 +

Mechanisms of transcription factors and others in somatic embryogenesis of plants

Author information +
文章历史 +

摘要

体胚发生是在植物离体培养条件下实现无性繁殖再生的关键途径之一,该过程通过体细胞重编程形成类似合子胚的结构,最终发育成完整的植株。体胚发生技术作为一种高效的植物再生技术,在植物遗传转化和基因编辑中具有应用潜力,在植物的遗传改良研究中具有重要价值。体胚发生过程涉及复杂的分子调控网络,笔者综述近年来关于植物体胚发生分子调控机制的研究进展,重点探讨关键转录因子,如WOX(WUSCHEL-RELATED HOMEOBOX)、AP2/ERF(APETALA2/ETHYLENE-RESPONSIVE FACTOR)和MADS-box基因家族等,以及相关的信号转导途径。这些转录因子在体胚发生过程中发挥着至关重要的作用。同时深入探讨体胚发生技术在植物育种等生物技术领域的广阔应用前景,随着研究的不断深入,这项技术将在植物生物技术和农林业发展中占据核心地位。

Abstract

Somatic embryogenesis is one of the key ways to achieve asexual reproduction of plants under in vitro culture conditions. The process undergoes somatic cell, treated by the exogenous hormone, reprogramming to form a zygote-like structure that eventually develops into a complete plant. As an efficient plant regeneration technology, somatic embryogenesis has the potential to be applied in plant Agrobacterium-mediated genetic transformation and CRISPR-based genome editing technologies, and is of great value in genetic improvement of plants. Recent advances have revealed that somatic embryogenesis is governed by a hierarchical molecular network involving multiple regulatory tiers. In this review, we review the recent research progress on the molecular regulatory mechanisms of somatic embryogenesis in plants, focusing on the key transcription factors, such as WOX (WUSCHEL-RELATED HOMEOBOX) gene family, AP2/ERF (APETALA2/ETHYLENE-RESPONSIVE FACTOR) and MADS-box gene family, as well as the related signaling pathways in which they are involved in. The members of WOX gene family, particularly WUS and WOX2/5/8/9, play a central role in maintaining stem cell pluripotency and establishing polarity during the development of embryos. The LAFL network (LEC1-ABI3-FUS3-LEC2), integrates hormonal signals, which regulate auxin biosynthesis (YUCs and TAA1) and the balance of endogenous ABA/GA, and epigenetic signals, which modified epigenetically, to regulate somatic embryogenesis. AP2/ERF superfamily members, notably BABY BOOM and PLETHORA 5(PLT5), are essential for somatic cells to acquire totipotency. Members of the MADS-box gene family, including AGL15 and AGL18, regulate somatic embryogenesis mainly by modulating GA-related pathways. These transcription factors play crucial roles in somatic embryogenesis. This paper delves into the broad application prospects of somatic embryogenesis in plant breeding and other biotechnology field. With the deepening of research, this technology will occupy a central position in plant biotechnology and agricultural development.

关键词

体胚发生 / 分子调控 / 转录因子 / 表观遗传

Key words

somatic embryogenesis / molecular regulation / transcription factors / epigenetics

引用本文

导出引用
张稼霁, 郝兆东, 鲁路, . 转录因子等在植物体胚发生中的作用机制[J]. 南京林业大学学报(自然科学版). 2025, 49(4): 46-56 https://doi.org/10.12302/j.issn.1000-2006.202412025
ZHANG Jiaji, HAO Zhaodong, LU Lu, et al. Mechanisms of transcription factors and others in somatic embryogenesis of plants[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(4): 46-56 https://doi.org/10.12302/j.issn.1000-2006.202412025
中图分类号: S722   

参考文献

[1]
HABERLANDT G. Plant tissue culture: 100 years since Gottlieb Haberlandt[M]. Vienna: Springer Vienna, 2003: 1-24.
[2]
SHARP W R, SONDAHL M R, CALDAS L S, et al. The physiology of in vitro asexual embryogenesis[J]. Horticultural Reviews, 1980, 2: 268-310.
[3]
GAJ M D. Direct somatic embryogenesis as a rapid and efficient system for in vitro regeneration of Arabidopsis thaliana[J]. Plant Cell,Tissue and Organ Culture, 2001, 64(1):39-46.DOI: 10.1023/A:1010679614721.
[4]
ZHANG M, WANG A B, QIN M, et al. Direct and indirect somatic embryogenesis induction in Camellia oleifera Abel[J]. Frontiers in Plant Science, 2021,12:644389.DOI: 10.3389/fpls.2021.644389.
[5]
陈金慧, 施季森, 诸葛强, 等. 杂交鹅掌楸体细胞胚胎发生研究[J]. 林业科学, 2003, 39(4):49-53,177.
CHEN J H, SHI J S, ZHUGE Q, et al. Studies on the somatic embryogenesis of Liriodendron hybrids(L. chinense × L. Tulipifera)[J]. Scientia Silvae Sinicae, 2003, 39(4):49-53,177.DOI: 10.3969/j.issn.1000-2006.2005.01.018.
[6]
HOU J Y, WU Y, SHEN Y C, et al. Plant regeneration through somatic embryogenesis and shoot organogenesis from immature zygotic embryos of Sapium sebiferum Roxb[J]. Scientia Horticulturae, 2015, 197:218-225.DOI: 10.1016/j.scienta.2015.09.040.
[7]
鲁路, 陆叶, 盛宇, 等. 不同活性炭对杂交鹅掌楸体胚发生的影响[J]. 南京林业大学学报(自然科学版), 2016, 40(2):59-64.
LU L, LU Y, SHENG Y, et al. Effects of different activated carbon on somatic embryogenesis of Liriodendron hybrids[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40(2):59-64.DOI: 10.3969/j.issn.1000-2006.2016.02.010.
[8]
CHEN T T, YANG D J, FAN R F, et al. γ-Aminobutyric acid a novel candidate for rapid induction in somatic embryogenesis of Liriodendron hybrid[J]. Plant Growth Regulation, 2022, 96(2):293-302.DOI: 10.1007/s10725-021-00776-8.
[9]
周佳君. 香榧液体悬浮培养体系的建立[D]. 杭州: 浙江农林大学, 2021.
ZHOU J J. Establishment of liquid suspension culture system of Torreya grandis[D]. Hangzhou: Zhejiang A & F University, 2021.DOI: 10.27756/d.cnki.gzjlx.2021.000190.
[10]
孙丹, 李宏博, 李千, 等. 北五味子体细胞胚发生过程中内源IAA、ABA和GA3含量的动态变化[J]. 植物生理学报, 2013, 49(1):70-74.
SUN D, LI H B, LI Q, et al. Dynamic variation of endogenous hormone during somatic embryo development of Schisandra incarnata[J]. Plant Physiology Journal, 2013, 49(1):70-74.DOI: 10.13592/j.cnki.ppj.2013.01.008.
[11]
刘华英. 柑橘体细胞胚发生的细胞学及生理生化特性研究[D]. 长沙: 湖南农业大学, 2003.
LIU H Y. Studies on the characters in cytology and physiology and biochemistry of somatic embryogenesis in Citrus[D]. Changsha: Hunan Agricultural University, 2003.
[12]
辛伟杰. 花烛体细胞胚胎发生及相关生理生化研究[D]. 南京: 南京农业大学, 2006.
XIN W J. Somatic embryogenesis and its physiological and biochemical characteristics of Anthurium[D]. Nanjing: Nanjing Agricultural University, 2006.
[13]
CHEN Z L, DEBERNARDI J M, DUBCOVSKY J, et al. The combination of morphogenic regulators BABY BOOM and GRF-GIF improves maize transformation efficiency[EB/OL]. bioRxiv, 2022: 506370.[2022-09-02]. https://www.biorxiv.org/content/10.1101/2022.09.02.506370v1.full. DOI: 10.1101/2022.09.02.506370.
[14]
IKEDA M, UMEHARA M, KAMADA H. Embryogenesis-related genes;its expression and roles during somatic and zygotic embryogenesis in carrot and Arabidopsis[J]. Plant Biotechnology, 2006, 23(2):153-161.
[15]
ZIMMERMAN J L. Somatic embryogenesis:a model for early development in higher plants[J]. The Plant Cell, 1993, 5(10):1411-1423.DOI:10.1105/tpc.5.10.1411.
[16]
宋跃, 甄成, 张含国, 等. 长白落叶松胚性愈伤组织诱导及体细胞胚胎发生[J]. 林业科学, 2016, 52(10):45-54.
SONG Y, ZHEN C, ZHANG H G, et al. Embryogenic callus induction and somatic embryogenesis from immature zygotic embryos of Larix olgensis[J]. Scientia Silvae Sinicae, 2016, 52(10):45-54.DOI:10.11707/j.1001-7488.20161006.
[17]
李哲馨, 李万峰, 韩素英, 等. 落叶松体细胞胚萌发能力研究[J]. 林业科学研究, 2017, 30(6):999-1003.
LI Z X, LI W F, HAN S Y, et al. Germination ability of somatic embryos in Larix leptolepis[J]. Forest Research, 2017, 30(6):999-1003.DOI: 10.13275/j.cnki.lykxyj.2017.06.016.
[18]
TANG Y, WU W H, ZHENG X Y, et al. AT-Hook transcription factors show functions in Liriodendron chinense under drought stress and somatic embryogenesis[J]. Plants (Basel), 2023, 12(6):1353.DOI: 10.3390/plants12061353.
[19]
JIN F Y, HU L S, YUAN D J, et al. Comparative transcriptome analysis between somatic embryos (SEs) and zygotic embryos in cotton:evidence for stress response functions in SE development[J]. Plant Biotechnology Journal, 2014, 12(2):161-173.DOI: 10.1111/pbi.12123.
[20]
GUO H, WANG J, HUO X, et al. Proteomic and phosphoproteomic analyses during plant regeneration initiation in cotton (Gossypium hirsutum L.)[J]. Genes, 2024, 15(8):1079.DOI: 10.3390/genes15081079.
[21]
GE X, YU X, LIU Z, et al. Spatiotemporal transcriptome and metabolome landscapes of cotton somatic embryos[J]. Nature Communications, 2025, 16(1):859.DOI: 10.1038/s41467-025-55870-6.
[22]
杨越. ARF19-WOX9/13模块介导外源生长素诱导百合胚性细胞形成的分子机制[D]. 沈阳: 沈阳农业大学, 2022.
YANG Y. Molecular mechanism of ARF19-WOX9/13 mediated exogenous auxin inducing the embryogenic cell formation in Lilium[D]. Shenyang: Shenyang Agricultural University, 2022.DOI: 10.27327/d.cnki.gshnu.2022.000021.
[23]
PUFKY J, QIU Y, RAO M V, et al. The auxin-induced transcriptome for etiolated Arabidopsis seedlings using a structure/function approach[J]. Functional & Integrative Genomics, 2003, 3(4):135-143.DOI: 10.1007/s10142-003-0093-7.
[24]
DE RYBEL B, AUDENAERT D, BEECKMAN T, et al. The past,present,and future of chemical biology in auxin research[J]. ACS Chemical Biology, 2009, 4(12):987-998.DOI: 10.1021/cb9001624.
[25]
TAN X, CALDERON-VILLALOBOS L I A, SHARON M, et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase[J]. Nature, 2007, 446(7136):640-645.DOI: 10.1038/nature05731.
[26]
FEHÉR A. Somatic embryogenesis:stress-induced remodeling of plant cell fate[J]. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2015, 1849(4):385-402.DOI: 10.1016/j.bbagrm.2014.07.005.
[27]
SU Y H, ZHAO X Y, LIU Y B, et al. Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis[J]. The Plant Journal, 2009, 59(3):448-460.DOI: 10.1111/j.1365-313X.2009.03880.x.
[28]
ZHOU X H, ZHENG R H, LIU G X, et al. Desiccation treatment and endogenous IAA levels are key factors influencing high frequency somatic embryogenesis in Cunninghamia lanceolata (Lamb.) Hook[J]. Frontiers in Plant Science, 2017, 8:2054.DOI: 10.3389/fpls.2017.02054.
[29]
BAI B, SU Y H, YUAN J, et al. Induction of somatic embryos in Arabidopsis requires local YUCCA expression mediated by the down-regulation of ethylene biosynthesis[J]. Molecular Plant, 2013, 6(4):1247-1260.DOI: 10.1093/mp/sss154.
[30]
ZHANG T, MA L, ZHU Q, et al. Multi-Omics analysis reveals the important role of indole-3-acetic acid homeostasis in male fertility of cotton[J]. Industrial Crops and Products, 2024,222:119480,DOI: 10.1016/j.indcrop.2024.119480.
[31]
YANG X, ZHANG X, YUAN D, et al. Transcript profiling reveals complex auxin signalling pathway and transcription regulation involved in dedifferentiation and redifferentiation during somatic embryogenesis in cotton[J]. BMC Plant Biology, 2012,12:110.DOI: 10.1186/1471-2229-12-110.
[32]
WÓJCIKOWSKA B, JASKÓLA K, GASIOREK P, et al. LEAFY COTYLEDON 2 (LEC2) promotes embryogenic induction in somatic tissues of Arabidopsis, via YUCCA-mediated auxin biosynthesis[J].Planta, 2013, 238(3):425-440.DOI: 10.1007/s00425-013-1892-2.
[33]
AYIL-GUTIÉRREZ B, GALAZ-ÁVALOS R M, PEÑA-CABRERA E, et al. Dynamics of the concentration of IAA and some of its conjugates during the induction of somatic embryogenesis in Coffea canephora[J]. Plant Signaling & Behavior, 2013, 8(11):e26998.DOI: 10.4161/psb.26998.
[34]
KIEFFER M, NEVE J, KEPINSKI S. Defining auxin response contexts in plant development[J]. Current Opinion in Plant Biology, 2010, 13(1):12-20.DOI: 10.1016/j.pbi.2009.10.006.
[35]
WÓJCIKOWSKA B, GAJ M D. Expression profiling of auxin response factor genes during somatic embryogenesis induction in Arabidopsis[J]. Plant Cell Reports, 2017, 36(6):843-858.DOI: 10.1007/s00299-017-2114-3.
[36]
HANSEN H, GROSSMANN K. Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition[J]. Plant Physiology, 2000, 124(3):1437-1448.DOI: 10.1104/pp.124.3.1437.
[37]
ARTECA R N, ARTECA J M. Effects of brassinosteroid, auxin, and cytokinin on ethylene production in Arabidopsis thaliana plants[J]. Journal of Experimental Botany, 2008, 59(11):3019-3026.DOI: 10.1093/jxb/ern159.
[38]
TOGNETTI V B, MÜHLENBOCK P, VAN BREUSEGEM F. Stress homeostasis-the redox and auxin perspective[J]. Plant,Cell and Environment, 2012, 35(2):321-333.DOI: 10.1111/j.1365-3040.2011.02324.x.
[39]
NOWAK K, WÓJCIKOWSKA B, GAJ M D. ERF022 impacts the induction of somatic embryogenesis in Arabidopsis through the ethylene-related pathway[J]. Planta, 2015, 241(4):967-985.DOI: 10.1007/s00425-014-2225-9.
[40]
SUN Y, ZANG Y Q, MA Y, et al. Identification and functional analysis of LpNAC37 associated with somatic embryogenesis in Lilium pumilum DC.Fisch.based on transcriptome analysis[J]. Plant Physiology and Biochemistry, 2023,205:107964.DOI: 10.1016/j.plaphy.2023.107964.
[41]
SENGER S, MOCK H P, CONRAD U, et al. Immunomodulation of ABA function affects early events in somatic embryo development[J]. Plant Cell Reports, 2001, 20(2):112-120.DOI: 10.1007/s002990000290.
[42]
CHEN B J, FIERS M, DEKKERS B J W, et al. ABA signalling promotes cell totipotency in the shoot apex of germinating embryos[J]. Journal of Experimental Botany, 2021, 72(18):6418-6436.DOI: 10.1093/jxb/erab306.
[43]
GONZÁLEZ-GUZMÁN M, APOSTOLOVA N, BELLÉS JM, et al. The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde[J]. Plant Cell, 2002, 14(8):1833-1846.DOI:10.1105/tpc.002477.
[44]
KUSHIRO T, OKAMOTO M, NAKABAYASHI K, et al. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8’-hydroxylases:key enzymes in ABA catabolism[J]. The EMBO Journal, 2004, 23(7):1647-1656.DOI: 10.1038/sj.emboj.7600121.
[45]
YAN A, CHEN Z. The pivotal role of abscisic acid signaling during transition from seed maturation to germination[J]. Plant Cell Reports, 2017, 36(5):689-703.DOI: 10.1007/s00299-016-2082-z.
[46]
LEPINIEC L, DEVIC M, ROSCOE T J, et al. Molecular and epigenetic regulations and functions of the LAFL transcriptional regulators that control seed development[J]. Plant Reproduction, 2018, 31(3):291-307.DOI: 10.1007/s00497-018-0337-2.
[47]
IWASE A, MITSUDA N, KOYAMA T, et al. The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis[J]. Current Biology, 2011, 21(6):508-514.DOI: 10.1016/j.cub.2011.02.020.
[48]
VAN DER GRAAFF E, LAUX T, RENSING S A. The WUS homeobox-containing (WOX) protein family[J]. Genome Biology, 2009, 10(12):248.DOI: 10.1186/gb-2009-10-12-248.
[49]
YADAV R K, PERALES M, GRUEL J, et al. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex[J]. Genes & Development, 2011, 25(19):2025-2030.DOI: 10.1101/gad.17258511.
[50]
BRAND U, FLETCHER J C, HOBE M, et al. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity[J]. Science, 2000, 289(5479):617-619.DOI: 10.1126/science.289.5479.617.
[51]
ZUO J R, NIU Q W, FRUGIS G, et al. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis[J]. The Plant Journal, 2002, 30(3):349-359.DOI: 10.1046/j.1365-313X.2002.01289.x.
[52]
CHEN X Y, LIU Y, LU L, et al. Establishment of a glucocorticoid inducible system for regulating somatic embryogenesis in Liriodendron hybrids[J]. Forestry Research, 2024,4:e006.DOI: 10.48130/forres-0024-0003.
[53]
LOWE K, ROTA M L, HOERSTER G, et al. Rapid genotype “independent” Zea mays L.(maize) transformation via direct somatic embryogenesis[J]. In Vitro Cellular & Developmental Biology.Plant, 2018, 54(3):240-252.DOI: 10.1007/s11627-018-9905-2.
[54]
LU L, HOLT A, CHEN X Y, et al. miR394 enhances WUSCHEL-induced somatic embryogenesis in Arabidopsis thaliana[J]. New Phytologist, 2023, 238(3):1059-1072.DOI: 10.1111/nph.18801.
[55]
NOWAK K, MORONCZYK J, GRZYB M, et al. miR172 regulates WUS during somatic embryogenesis in Arabidopsis via AP2[J]. Cells, 2022, 11(4):718.DOI: 10.3390/cells11040718.
[56]
PAN W B, CHENG Z T, HAN Z G, et al. Efficient genetic transformation and CRISPR/Cas9-mediated genome editing of watermelon assisted by genes encoding developmental regulators[J]. Journal of Zhejiang University(Science B), 2022, 23(4):339-344.DOI: 10.1631/jzus.B2200119.
[57]
HAECKER A, GROSS-HARDT R, GEIGES B, et al. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana[J]. Development, 2004, 131(3):657-668.DOI: 10.1242/dev.00963.
[58]
ZHAO S, JIANG Q T, MA J, et al. Characterization and expression analysis of WOX5 genes from wheat and its relatives[J]. Gene, 2014, 537(1):63-69.DOI: 10.1016/j.gene.2013.12.022.
[59]
LONG X F, ZHANG J J, WANG D D, et al. Expression dynamics of WOX homeodomain transcription factors during somatic embryogenesis in Liriodendron hybrids[J]. Forestry Research, 2023,3:15.DOI: 10.48130/FR-2023-0015.
[60]
PALOVAARA J, HALLBERG H, STASOLLA C, et al. Comparative expression pattern analysis of WUSCHEL-related homeobox 2 (WOX2) and WOX8/9 in developing seeds and somatic embryos of the gymnosperm Picea abies[J]. New Phytologist, 2010, 188(1):122-135.DOI: 10.1111/j.1469-8137.2010.03336.x.
[61]
HAO Z D, WU H, ZHENG R H, et al. The plant peptide hormone phytosulfokine promotes somatic embryogenesis by maintaining redox homeostasis in Cunninghamia lanceolata[J]. The Plant Journal, 2023, 113(4):716-733.DOI: 10.1111/tpj.16077.
[62]
MCFARLAND F L, COLLIER R, WALTER N, et al. A key to totipotency:wuschel-like homeobox 2a unlocks embryogenic culture response in maize (Zea mays L.)[J]. Plant Biotechnology Journal, 2023, 21(9):1860-1872.DOI: 10.1111/pbi.14098.
[63]
KAO P, SCHON M A, MOSIOLEK M, et al. Gene expression variation in Arabidopsis embryos at single-nucleus resolution[J]. Development, 2021, 148(13):dev199589.DOI: 10.1242/dev.199589.
[64]
TVOROGOVA V E, FEDOROVA Y A, POTSENKOVSKAYA E A, et al. The WUSCHEL-related homeobox transcription factor MtWOX9-1 stimulates somatic embryogenesis in Medicago truncatula[J]. Plant Cell,Tissue and Organ Culture (PCTOC), 2019, 138(3):517-527.DOI: 10.1007/s11240-019-01648-w.
[65]
PETRONI K, KUMIMOTO R W, GNESUTTA N, et al. The promiscuous life of plant NUCLEAR FACTOR Y transcription factors[J]. The Plant Cell, 2012, 24(12):4777-4792.DOI: 10.1105/tpc.112.105734.
[66]
SWAMINATHAN K, PETERSON K, JACK T. The plant B3 superfamily[J]. Trends in Plant Science, 2008, 13(12):647-655.DOI: 10.1016/j.tplants.2008.09.006.
[67]
GUO F D, LIU C L, XIA H, et al. Induced expression of AtLEC1 and AtLEC2 differentially promotes somatic embryogenesis in transgenic tobacco plants[J]. PLoS One, 2013, 8(8):e71714.DOI: 10.1371/journal.pone.0071714.
[68]
BRAND A, QUIMBAYA M, TOHME J, et al. Arabidopsis LEC1 and LEC2 orthologous genes are key regulators of somatic embryogenesis in cassava[J]. Frontiers in Plant Science, 2019,10:673.DOI: 10.3389/fpls.2019.00673.
[69]
GAJ M D, ZHANG S B, HARADA J J, et al. Leafy Cotyledon genes are essential for induction of somatic embryogenesis of Arabidopsis[J]. Planta, 2005, 222(6):977-988.DOI: 10.1007/s00425-005-0041-y.
[70]
STONE S L, BRAYBROOK S A, PAULA S L, et al. Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity:implications for somatic embryogenesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(8):3151-3156.DOI: 10.1073/pnas.0712364105.
[71]
BRAYBROOK S A, STONE S L, PARK S, et al. Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(9):3468-3473.DOI: 10.1073/pnas.0511331103.
[72]
CURABA J, MORITZ T, BLERVAQUE R, et al. AtGA3ox2,a key gene responsible for bioactive gibberellin biosynthesis,is regulated during embryogenesis by LEAFY COTYLEDON2 and FUSCA3 in Arabidopsis[J]. Plant Physiology, 2004, 136(3):3660-3669.DOI: 10.1104/pp.104.047266.
[73]
WANG H, CARUSO L V, BRUCE DOWNIE A, et al. The embryo MADS domain protein AGAMOUS-Like 15 directly regulates expression of a gene encoding an enzyme involved in gibberellin metabolism[J]. The Plant Cell, 2004, 16(5):1206-1219.DOI: 10.1105/tpc.021261.
[74]
WANG F X, SHANG G D, WU L Y, et al. Chromatin accessibility dynamics and a hierarchical transcriptional regulatory network structure for plant somatic embryogenesis[J]. Developmental Cell, 2020, 54(6):742-757.e8.DOI: 10.1016/j.devcel.2020.07.003.
[75]
HORSTMAN A, LI M F, HEIDMANN I, et al. The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis[J]. Plant Physiology, 2017, 175(2):848-857.DOI: 10.1104/pp.17.00232.
[76]
JIA H Y, SUZUKI M, MCCARTY D R. Regulation of the seed to seedling developmental phase transition by the LAFL and VAL transcription factor networks[J]. Wiley Interdisciplinary Reviews:Developmental Biology, 2014, 3(1):135-145.DOI: 10.1002/wdev.126.
[77]
CHEN D H, MOLITOR A, LIU C L, et al. The Arabidopsis PRC1-like ring-finger proteins are necessary for repression of embryonic traits during vegetative growth[J]. Cell Research, 2010, 20(12):1332-1344.DOI: 10.1038/cr.2010.151.
[78]
MA Z M, HU L J, JIANG W Z. Understanding AP2/ERF transcription factor responses and tolerance to various abiotic stresses in plants:a comprehensive review[J]. International Journal of Molecular Sciences, 2024, 25(2):893.DOI: 10.3390/ijms25020893.
[79]
KIM S, SOLTIS P S, WALL K, et al. Phylogeny and domain evolution in the APETALA2-like gene family[J]. Molecular Biology and Evolution, 2006, 23(1):107-120.DOI: 10.1093/molbev/msj014.
[80]
BOUTILIER K, OFFRINGA R, SHARMA V K, et al. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth[J]. The Plant Cell, 2002, 14(8):1737-1749.DOI: 10.1105/tpc.001941.
[81]
CHEN J J, TOMES S, GLEAVE A P, et al. Significant improvement of apple (Malus domestica Borkh.) transgenic plant production by pre-transformation with a Baby boom transcription factor[J]. Horticulture Research, 2022,9:uhab014.DOI: 10.1093/hr/uhab014.
[82]
KHANDAY I, SANTOS-MEDELLÍN C, SUNDARESAN V. Somatic embryo initiation by rice BABY BOOM1 involves activation of zygote-expressed auxin biosynthesis genes[J]. New Phytologist, 2023, 238(2):673-687.DOI: 10.1111/nph.18774.
[83]
TSUWAMOTO R, YOKOI S, TAKAHATA Y. Arabidopsis EMBRYOMAKER encoding an AP2 domain transcription factor plays a key role in developmental change from vegetative to embryonic phase[J]. Plant Molecular Biology, 2010, 73(4/5):481-492.DOI: 10.1007/s11103-010-9634-3.
[84]
MANTIRI F R, KURDYUKOV S, LOHAR D P, et al. The transcription factor MtSERF1 of the ERF subfamily identified by transcriptional profiling is required for somatic embryogenesis induced by auxin plus cytokinin in Medicago truncatula[J]. Plant Physiology, 2008, 146(4):1622-1636.DOI: 10.1104/pp.107.110379.
[85]
NOLE-WILSON S, TRANBY T L, KRIZEK B A. AINTEGUMENTA-like (AIL) genes are expressed in young tissues and may specify meristematic or division-competent states[J]. Plant Molecular Biology, 2005, 57(5):613-628.DOI: 10.1007/s11103-005-0955-6.
[86]
HORSTMAN A, FUKUOKA H, MUINO J M, et al. AIL and HDG proteins act antagonistically to control cell proliferation[J]. Development, 2015, 142(3):454-464.DOI: 10.1242/dev.117168.
[87]
GALINHA C, HOFHUIS H, LUIJTEN M, et al. PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development[J]. Nature, 2007, 449(7165):1053-1057.DOI: 10.1038/nature06206.
[88]
YANOFSKY M F, MA H, BOWMAN J L, et al. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors[J]. Nature, 1990, 346(6279):35-39.DOI: 10.1038/346035a0.
[89]
PERRY S E, LEHTI M D, FERNANDEZ D E. The MADS-domain protein AGAMOUS-like 15 accumulates in embryonic tissues with diverse origins[J]. Plant Physiology, 1999, 120(1):121-130.DOI: 10.1104/pp.120.1.121.
[90]
ROUNSLEY S D, DITTA G S, YANOFSKY M F. Diverse roles for MADS box genes in Arabidopsis development[J]. The Plant Cell, 1995, 7(8):1259-1269.DOI: 10.1105/tpc.7.8.1259.
[91]
YANG Z R, LI C F, WANG Y, et al. GhAGL15s, preferentially expressed during somatic embryogenesis,promote embryogenic callus formation in cotton (Gossypium hirsutum L.)[J]. Molecular Genetics and Genomics, 2014, 289(5):873-883.DOI: 10.1007/s00438-014-0856-y.
[92]
ZHENG Q L, ZHENG Y M, JI H H, et al. Gene regulation by the AGL15 transcription factor reveals hormone interactions in somatic embryogenesis[J]. Plant Physiology, 2016, 172(4):2374-2387.DOI: 10.1104/pp.16.00564.
[93]
ZHENG Q L, ZHENG Y M, PERRY S E. AGAMOUS-Like15 promotes somatic embryogenesis in Arabidopsis and soybean in part by the control of ethylene biosynthesis and response[J]. Plant Physiology, 2013, 161(4):2113-2127.DOI: 10.1104/pp.113.216275.
[94]
ZHU C, PERRY S E. Control of expression and autoregulation of AGL15,a member of the MADS-box family[J]. The Plant Journal, 2005, 41(4):583-594.DOI: 10.1111/j.1365-313X.2004.02320.x.
[95]
ZHENG Q L, PERRY S E. Alterations in the transcriptome of soybean in response to enhanced somatic embryogenesis promoted by orthologs of Agamous-like15 and Agamous-like18[J]. Plant Physiology, 2014, 164(3):1365-1377.DOI: 10.1104/pp.113.234062.
[96]
ZHENG Y M, REN N, WANG H, et al. Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15[J]. The Plant Cell, 2009, 21(9):2563-2577.DOI: 10.1105/tpc.109.068890.
[97]
THAKARE D, TANG W N, HILL K, et al. The MADS-domain transcriptional regulator AGAMOUS-LIKE15 promotes somatic embryo development in Arabidopsis and soybean[J]. Plant Physiology, 2008, 146(4):1663-1672.DOI: 10.1104/pp.108.115832.
[98]
PAUL P, JOSHI S, TIAN R, et al. The MADS-domain factor AGAMOUS-Like18 promotes somatic embryogenesis[J]. Plant Physiology, 2022, 188(3):1617-1631.DOI: 10.1093/plphys/kiab553.
[99]
CHANG Y N, ZHU C, JIANG J K, et al. Epigenetic regulation in plant abiotic stress responses[J]. Journal of Integrative Plant Biology, 2020, 62(5):563-580.DOI: 10.1111/jipb.12901.
[100]
DAL SANTO S, DE PAOLI E, PAGLIARANI C, et al. Stress responses and epigenomic instability mark the loss of somatic embryogenesis competence in grapevine[J]. Plant Physiology, 2022, 188(1):490-508.DOI: 10.1093/plphys/kiab477.
[101]
KARIM R, TAN Y S, SINGH P, et al. Expression and DNA methylation of SERK,BBM,LEC2 and WUS genes in in vitro cultures of Boesenbergia rotunda (L.) Mansf[J]. Physiology and Molecular Biology of Plants, 2018, 24(5):741-751.DOI: 10.1007/s12298-018-0566-8.
[102]
SIVANESAN I, NAYEEM S, VENKIDASAMY B, et al. Genetic and epigenetic modes of the regulation of somatic embryogenesis:a review[J]. Biologia Futura, 2022, 73(3):259-277.DOI: 10.1007/s42977-022-00126-3.
[103]
ZHANG H M, LANG Z B, ZHU J K. Dynamics and function of DNA methylation in plants[J]. Nature Reviews.Molecular Cell Biology, 2018, 19(8):489-506.DOI: 10.1038/s41580-018-0016-z.
[104]
HE X J, CHEN T P, ZHU J K. Regulation and function of DNA methylation in plants and animals[J]. Cell Research, 2011, 21(3):442-465.DOI: 10.1038/cr.2011.23.
[105]
LI J Y, WANG M J, LI Y J, et al. Multi-omics analyses reveal epigenomics basis for cotton somatic embryogenesis through successive regeneration acclimation process[J]. Plant Biotechnology Journal, 2019, 17(2):435-450.DOI: 10.1111/pbi.12988.
[106]
GRZYBKOWSKA D, MORONCZYK J, WÓJCIKOWSKA B, et al. Azacitidine (5-AzaC)-treatment and mutations in DNA methylase genes affect embryogenic response and expression of the genes that are involved in somatic embryogenesis in Arabidopsis[J]. Plant Growth Regulation, 2018, 85(2):243-256.DOI: 10.1007/s10725-018-0389-1.
[107]
FENG Y X, WANG Y M, WANG T, et al. NUCLEAR RNA POLYMERASE D1 is essential for tomato embryogenesis and desiccation tolerance in seeds[J]. Cell Reports, 2025, 44(3):115345.DOI: 10.1016/j.celrep.2025.115345.
[108]
WU K Q, ZHANG L, ZHOU C H, et al. HDA6 is required for jasmonate response,senescence and flowering in Arabidopsis[J]. Journal of Experimental Botany, 2008, 59(2):225-234.DOI: 10.1093/jxb/erm300.
[109]
RODRÍGUEZ-SANZ H, MORENO-ROMERO J, SOLÍS M T, et al. Changes in histone methylation and acetylation during microspore reprogramming to embryogenesis occur concomitantly with Bn HKMT and Bn HAT expression and are associated with cell totipotency,proliferation,and differentiation in Brassica napus[J]. Cytogenetic and Genome Research, 2014, 143(1/2/3):209-218.DOI: 10.1159/000365261.
[110]
WÓJCIKOWSKA B, BOTOR M, MORONCZYK J, et al. Trichostatin A triggers an embryogenic transition in Arabidopsis explants via an auxin-related pathway[J]. Frontiers in Plant Science, 2018,9:1353.DOI: 10.3389/fpls.2018.01353.
[111]
TANAKA M, KIKUCHI A, KAMADA H. The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination[J]. Plant Physiology, 2008, 146(1):149-161.DOI: 10.1104/pp.107.111674.
[112]
VOINNET O. Origin,biogenesis,and activity of plant microRNAs[J]. Cell, 2009, 136(4):669-687.DOI: 10.1016/j.cell.2009.01.046.
[113]
WU X M, LIU M Y, GE X X, et al. Stage and tissue-specific modulation of ten conserved miRNAs and their targets during somatic embryogenesis of Valencia sweet orange[J]. Planta, 2011, 233(3):495-505.DOI: 10.1007/s00425-010-1312-9.
[114]
LIN Y L, LAI Z X. Comparative analysis reveals dynamic changes in miRNAs and their targets and expression during somatic embryogenesis in longan (Dimocarpus longan Lour.)[J]. PLoS One, 2013, 8(4):e60337.DOI: 10.1371/journal.pone.0060337.
[115]
LONG J M, LIU C Y, FENG M Q, et al. miR156-SPL modules regulate induction of somatic embryogenesis in Citrus callus[J]. Journal of Experimental Botany, 2018, 69(12):2979-2993.DOI: 10.1093/jxb/ery132.
[116]
LI Z X, LI S G, ZHANG L F, et al. Over-expression of miR166a inhibits cotyledon formation in somatic embryos and promotes lateral root development in seedlings of Larix leptolepis[J]. Plant Cell,Tissue and Organ Culture (PCTOC), 2016, 127(2):461-473.DOI: 10.1007/s11240-016-1071-9.

基金

国家重点研发计划(2023YFD2200101)
福建省林业科技项目(2024FKJ05)
江苏省高等学校优势学科建设项目(PAPD)

编辑: 吴祝华
PDF(1633 KB)

Accesses

Citation

Detail

段落导航
相关文章

/