立地条件对长白落叶松人工林单木径向生长-干旱关系的调节效应

李瑞蓉, 王姿澄, 陈冠谋, 朱万才, 董灵波

南京林业大学学报(自然科学版) ›› 2026, Vol. 50 ›› Issue (1) : 214-222.

PDF(1784 KB)
PDF(1784 KB)
南京林业大学学报(自然科学版) ›› 2026, Vol. 50 ›› Issue (1) : 214-222. DOI: 10.12302/j.issn.1000-2006.202501009
研究论文

立地条件对长白落叶松人工林单木径向生长-干旱关系的调节效应

作者信息 +

Moderating effect of site conditions on radial growth-drought relationship of individual-tree in Larix olgensis

Author information +
文章历史 +

摘要

【目的】 量化立地条件对长白落叶松人工林单木径向生长-干旱关系的调节作用,为气候变化背景下长白落叶松人工林的科学经营提供支撑。【方法】以黑龙江省哈尔滨市宾县胜利林场36块长白落叶松人工林为对象,采用立地指数(SI)将各样地划分为3个等级,即好立地(SI≥20.0 m)7块、中等立地(17.0 m ≤SI<20.0 m)14块、差立地(SI<17.0 m)15块;采用树木年轮学方法以及抵抗力、恢复力和弹性力3个指标量化和评估不同立地条件对长白落叶松单木径向生长-干旱关系的调节作用。【结果】标准化降水蒸散发指数(SPEI)共识别到4次中等程度的干旱事件;限制长白落叶松径向生长的主要气候因子在不同立地等级间存在一定差异,其中总体组主要气候因子为非生长季降水量和SPEI,立地差组为非生长季月均最低温、降水量和SPEI,立地中等组为非生长季降水量和SPEI,而好立地组为非生长季月均最高温、降水量和SPEI;不同立地条件下的长白落叶松在抵抗力、恢复力和弹性力方面的差异不同,抵抗力表现为好立地>中等立地>差立地,而恢复力和弹性力则表现出相反趋势;随着干旱年份的延续,不同立地长白落叶松的抵抗力显著提高,恢复力呈先上升后下降变化趋势,整体趋势表现为显著降低,弹性力则整体呈现上升趋势,与抵抗力的结果一致,与恢复力的结果相反。【结论】非生长季降水以及SPEI是限制长白落叶松生长的主要因素,但立地条件对径向生长与中度干旱之间的调节效应不显著,而对其他干旱等级和干旱持续时间下的径向生长-干旱间的调节效应是否显著,仍有待于进一步研究。

Abstract

【Objective】 This study aims to quantify the regulatory effects of site conditions on the tree-ring radial growth-drought relationship in Larix olgensis plantations, providing scientific support for sustainable forest management under climate change.【Method】We investigated 36 L. olgensis plantation plots in Shengli Forest Farm, Bin County, Harbin City, Heilongjiang Province. The plots were classified into three site quality grades using the site index (SI): good site conditions (SI≥20.0 m, 7 plots), medium site conditions (17.0 m≤SI<20.0 m, 14 plots), and poor site conditions (SI<17.0 m, 15 plots). Dendrochronological methods combined with three drought response indices (resistance, recovery, and resilience) were employed to evaluate how site conditions modulate the growth-drought relationship.【Result】The standardized precipitation evapotranspiration index (SPEI) identified four moderate drought events with an average duration of 1.25 years. Growth-limiting climatic factors varied across site condition grades: for overall group, non-growing season precipitation and SPEI were the primary limiting factors; poor site condition was constrained by monthly minimum temperature, precipitation and SPEI during the non-growing season; medium site condition by non-growing season precipitation and SPEI; while good site condition was mainly affected by monthly maximum temperature, precipitation and SPEI in the non-growing season. The differences in resistance, recovery of L. olgensis under different site conditions were different, and the resistance and resilience showed a comparative pattern: good site condition > medium site condition > poor site condition, while the recovery and resilience showed an opposite trend. With the continuation of drought years, the resistance of L. olgensis in different site conditions increased significantly, the trend of recovery increased first and then decreased, the overall trend showed a significant decrease, and the resilience showed an overall upward trend, which was consistent with the results of resistance and contrary to the results of recovery. 【Conclusion】Non-growing season precipitation and SPEI were identified as the primary limiting factors for L. olgensis growth. However, site conditions showed no significant moderating effect on the relationship between radial growth and moderate drought events. Further research is needed to determine whether site conditions significantly regulate radial growth-drought relationships under different drought severity levels and durations.

关键词

长白落叶松 / 人工林 / 立地条件 / 径向生长 / 干旱

Key words

Larix olgensis / plantations / site conditions / radial growth / drought

引用本文

导出引用
李瑞蓉, 王姿澄, 陈冠谋, . 立地条件对长白落叶松人工林单木径向生长-干旱关系的调节效应[J]. 南京林业大学学报(自然科学版). 2026, 50(1): 214-222 https://doi.org/10.12302/j.issn.1000-2006.202501009
LI Ruirong, WANG Zicheng, CHEN Guanmou, et al. Moderating effect of site conditions on radial growth-drought relationship of individual-tree in Larix olgensis[J]. Journal of Nanjing Forestry University (Natural Sciences Edition). 2026, 50(1): 214-222 https://doi.org/10.12302/j.issn.1000-2006.202501009
中图分类号: S753   

参考文献

[1]
PUGH T A M, LINDESKOG M, SMITH B, et al. Role of forest regrowth in global carbon sink dynamics[J]. Proceedings of the National Academy of Sciences, 2019, 116(10): 4382-4387.
[2]
LIU H Y, PARK WILLIAMS A, ALLEN C D, et al. Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia[J]. Global Change Biology, 2013, 19(8): 2500-2510.
[3]
阎弘, 孙滢洁, 周婉莹, 等. 大兴安岭不同纬度兴安落叶松生长对干旱适应性及生长衰退的差异[J]. 生态学报, 2023, 43 (10): 3958-3970.
YAN H, SUN Y J, ZHOU W Y, et al. Distinctions in drought adaptability and growth decline of Larix gmelinii at different latitudes in Greater Khingan Mountains[J]. Acta Ecologica Sinica, 2023, 43 (10):3958-3970.
[4]
MASSON-DELMOTTE V, ZHAI P, PIRANI A, et al. Climate change 2021: the physical science basis[R]. Contribution of Working Group I to The Sixth Assessment Report of The Intergovernmental Panel on Climate Change, 2021, 2(1): 2391.
[5]
吴梁厚, 周宏权. 甘蒙柽柳径向生长对环境变化的响应[J]. 四川林业科技, 2024, 45 (5): 99-105.
WU L H, ZHOU H Q. Response of radial growth of Tamarix austromongolica to environmental changes[J]. Journal of Sichuan Forestry Science and Technology, 2024, 45 (5): 99-105.
[6]
王强, 叶尔江·拜克吐尔汉, 徐栋, 等. 气候对天山中部不同海拔天山云杉径向生长的影响[J]. 森林与环境学报, 2024, 44 (5): 530-538.
WANG Q, Baiketuerhan Yeerjiang, XU D, et al. Response of radial growth of Picea schrenkiana var.tianschanica to climate change at different elevations in central Tianshan[J]. Journal of Forest and Environment, 2024, 44 (5): 530-538. DOI: 10.13324/j.cnki.jfcf.2024.05.010.
[7]
王国蕊, 徐丽宏, 于澎涛, 等. 六盘山南坡不同密度华北落叶松人工林年内径向生长动态及其影响因素[J]. 林业科学研究, 2024, 37(2): 72-80.
WANG G R, XU L H, YU P T, et al. The annual radial growth dynamics and influencing factors of Larix principis-rupprechtii plantations with different densities on the southern slope of Liupan Mountain[J]. Forest Research, 2024, 37(2): 72-80.
[8]
YANG J W, COOPER D J, ZHANG X, et al. Climatic controls of Pinus pumila radial growth along an altitude gradient[J]. New Forests, 2022, 53(2): 319-335.
[9]
WANG X C, ZHANG M H, JI Y, et al. Temperature signals in tree-ring width and divergent growth of Korean pine response to recent climate warming in northeast Asia[J]. Trees, 2017, 31: 415-427.
[10]
VICENTE-SERRANO S M, GOUVEIA C, CAMARERO J J, et al. Response of vegetation to drought time-scales across global land biomes[J]. Proceedings of the National Academy of Sciences, 2013, 110(1): 52-57.
[11]
GAO S, LIU R S, ZHOU T, et al. Dynamic responses of tree-ring growth to multiple dimensions of drought[J]. Global Change Biology, 2018, 24(11): 5380-5390.
[12]
HUANG M T, WANG X H, KEENAN T F, et al. Drought timing influences the legacy of tree growth recovery[J]. Global Change Biology, 2018, 24(8): 3546-3559.
[13]
GAO L S, ZHANG Y, WANG X M, et al. Sensitivity of three dominant tree species from the upper boundary of their forest type to climate change at Changbai Mountain, Northeastern China[J]. Tree-Ring Research, 2018, 74(1): 39-49.
[14]
HAYNES K J, TARDIF J C, PARRY D. Drought and surface-level solar radiation predict the severity of outbreaks of a widespread defoliating insect[J]. Ecosphere, 2018, 9(8):e02387.
[15]
LONGO M, KNOX R G, LEVINE N M, et al. Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts[J]. New Phytologist, 2018, 219(3): 914-931.
[16]
申佳艳, 李帅锋, 黄小波, 等. 金沙江流域不同海拔处云南松生态弹性及生长衰退过程[J]. 林业科学, 2020, 56(6): 1-11.
SHEN J Y, LI S F, HUANG X B, et al. Ecological resilience and growth degradation of Pinus yunnanensis at different altitudes in Jinsha River Basin[J]. Scientia Silvae Sinicae, 2020, 56(6): 1-11.
[17]
陈振举, 孙雨, 何兴元, 等. 沈阳市区古油松年轮宽度年表的建立[J]. 应用生态学报, 2006 (12): 2241-2247.
CHEN Z J, SUN Y, HE X Y, et al. Tree-ring width chronology of ancient Chinese pine in Shenyang[J]. Chinese Journal of Applied Ecology, 2006 (12): 2241-2247.
[18]
郑瞳. 树木生长弹性在干旱胁迫下的时间趋势及其影响因素[D]. 哈尔滨: 东北林业大学, 2023.
ZHENG T. Temporal trend and influence factors of tree growth resilience indices under drought stress[D]. Harbin: Northeast Forestry University, 2023. DOI: 10.27009/d.cnki.gdblu.2023.000066.
[19]
陈祥伟, 胡海波. 林学概论[M]. 北京: 中国林业出版社, 2005: 182.
CHEN X W, HU H B. Introduction to forestry[M]. Beijing: China Forestry Publishing House, 2005: 182.
[20]
周小东, 常顺利, 王冠正, 等. 天山雪岭云杉径向生长响应气候变化的海拔分异[J]. 林业科学, 2024, 60(3): 45-56.
ZHOU X D, CHANG S L, WANG G Z, et al. Altitude differentiation of radial growth of Picea schrenkiana in response to climate change in Tianshan Mountains[J]. Scientia Silvae Sinicae, 2024, 60(3): 45-56.
[21]
李晓琴, 张凌楠, 曾小敏, 等. 黄土高原中部针叶树与灌木径向生长对气候的响应差异[J]. 生态学报, 2020, 40(16): 5685-5697.
LI X Q, ZHANG L N, ZENG X M, et al. Different response of conifer and shrubs radial growth to climate in the middle Loess Plateau[J]. Acta Ecologica Sinica, 2020, 40(16): 5685-5697.
[22]
张晓, 潘磊磊, SEMYUNG K, 等. 沙地天然樟子松径向生长对干旱的响应[J]. 北京林业大学学报, 2018, 40(7): 27-35.
ZHANG X, PAN L L, SEMYUNG K, et al. Climatological response of radial growth for Pinus sylvestris var.mongolica to drought in Hulun Buir Sandland, Inner Mongolia of northern China[J]. Journal of Beijing Forestry University, 2018, 40(7): 27-35. DOI: 10.13332/j.1000-1522.20170467.
[23]
WU C, CHEN D, SUN X, et al. Contributions of competition on Larix kaempferi tree-ring growth were higher than long-term climate in China[J]. Agricultural and Forest Meteorology, 2022, 320: 108967.
[24]
SHEN J, LI Z, GAO C, et al. Radial growth response of Pinus yunnanensis to rising temperature and drought stress on the Yunnan Plateau, southwestern China[J]. Forest Ecology and Management, 2020, 474: 118357.
[25]
于健, 徐倩倩, 刘文慧, 等. 长白山东坡不同海拔长白落叶松径向生长对气候变化的响应[J]. 植物生态学报, 2016, 40(1): 24-35.
YU J, XU Q Q, LIU W H, et al. Response of radial growth to climate change for Larix olgensis along an altitudinal gradienton the eastern slope of Changbai Mountain, Northeast China[J]. Chinese Journal of Plant Ecology, 2016, 40(1): 24-35.
[26]
王鹤智. 东北林区林分生长动态模拟系统的研究[D]. 哈尔滨: 东北林业大学, 2012.
WANG H Z. Dynamic simulating system for stand growth of forests in northeast China[D]. Harbin: Northeast Forestry University, 2012.
[27]
WANG T, WANG G, INNES J L, et al. ClimateAP: an application for dynamic local downscaling of historical and future climate data in Asia Pacific[J]. Frontiers of Agricultural Science and Engineering, 2017, 4(4): 448-458.
[28]
中国气象局政策法规司. 气象标准汇编, 气象干旱等级:GB/T20481—2006[M]. 北京: 气象出版社, 2006: 33-34.
Department of Policies and Regulations, China Meteorological Administration. Compilation of meteorological standards, meteorological drought grade:GB/T20481—2006[M]. Beijing: China Meteorological Press, 2006: 33-34.
[29]
Bunn A G. A dendrochronology program library in R (dplR)[J]. Dendrochronologia, 2008, 26(2): 115-124.
[30]
LLORET F, KEELING E G, SALA A. Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests[J]. Oikos, 2011, 120(12): 1909-1920.
[31]
PRETZSCH H, SCHÜTZE G, UHL E. Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation[J]. Plant Biology, 2013, 15(3): 483-495.
[32]
ZHANG W G, XIAO D R, TIAN K. et al. Response of radial growth of three conifer species to climate at their respective upper distributional limits on Yulong Snow Mountain[J]. Acta Ecologica Sinica, 2017, 37(11): 3796-3804.
[33]
BEGUM S, NAKABA S, YAMAGISHI Y. et al. Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees[J]. Physiologia Plantarum, 2013, 147(1): 46-54.
[34]
ROSSI S, ANFODILLO T, CUFAR K, et al. Pattern of xylem phenology in conifers of cold ecosystems at the northern Hemisphere[J]. Global Change Biology, 2016, 22(11): 3804-3813.
[35]
许方岳, 陈帅威, 王立夫, 等. 干旱对庐山日本柳杉径向生长量的影响[J]. 江西农业大学学报, 2020, 42(4): 811-820.
XU F Y, CHEN S W, WANG L F, et al. Effects of drought on radial growth of Cryptomoria japonica[J]. Acta Agriculturae Universitatis Jiangxiensis, 2020, 42(4): 811-820. DOI: 10.13836/j.jjau.2020092.
[36]
赵学鹏, 白学平, 李俊霞, 等. 气候变暖背景下不同海拔长白落叶松对气候变化的响应[J]. 生态学杂志, 2019, 38(3): 637-647.
ZHAO X P, BAI X P, LI J X, et al. Response of Larix olgensis at different elevations to climate change in the context of climate warming[J]. Chinese Journal of Ecology, 2019, 38(3): 637-647. DOI: 10.13292/j.1000-4890.201903.021.
[37]
雷帅, 张劲松, 孟平, 等. 中国北部不同地点樟子松人工林径向生长对气候响应的差异[J]. 生态学报, 2020, 40(13): 4479-4492.
LEI S, ZHANG J S, MENG P, et al. Differences in tree-ring growth response of Pinus sylvestris var. mongolica to climatic variation at different locations in northern China[J]. Acta Ecologica Sinica, 2020, 40(13): 4479-4492.
[38]
张博奕, 李雪, 张先亮. 干旱事件对华北落叶松和油松生态弹性的影响差异[J]. 河北农业大学学报, 2023, 46(4): 65-73.
ZHANG B Y, LI X, ZHANG X L. Influences of drought events on ecological resilience of Larix principisrupprechtii and Pinus tabulaeformis[J]. Journal of Hebei Agricultural University, 2023, 46(4): 65-73. DOI: 10.13320/j.cnki.jauh.2023.0060.
[39]
GAZOL A, CAMARERO J J, ANDEREGG W R L, et al. Impacts of droughts on the growth resilience of northern Hemisphere forests[J]. Global Ecology and Biogeography, 2017, 26(2): 166-176.
[40]
FANG O, ZHANG Q B. Tree resilience to drought increases in the Tibetan Plateau[J]. Global Change Biology, 2019, 25(1): 245-253.
[41]
GUISSET C, DENDONCKER M, VINCKE C, et al. Drought timing, intensity, and consecutiveness have more influence on Douglas fir growth response than site conditions and stand density in European temperate climate[J]. Forest Ecology and Management, 2024, 569: 122177.
[42]
张晓英, 王飞, 铁牛. 兴安落叶松林径向生长与气候因子的关系[J]. 林业调查规划, 2021, 46(6): 106-113.
ZHANG X Y, WANG F, TIE N. Relationship between radial growth of Larix gmelinii forest and climatic factors[J]. Forest Inventory and Planning, 2021, 46(6): 106-113.
[43]
张子航, 王恒, 贾建恒, 等. 不同密度华北落叶松径向生长对干旱事件的响应[J]. 应用生态学报, 2024, 35(5): 1169-1176.
ZHANG Z H, WANG H, JIA J H, et al. Responses of radial growth of Larix principis-rupprechtii at different densities to drought events[J]. Chinese Journal of Applied Ecology, 2024, 35(5): 1169-1176. DOI: 10.13287/j.1001-9332.202405.005.
[44]
HELMAN D, LENSKY I M, YAKIR D, et al. Forests growing under dry conditions have higher hydrological resilience to drought than do more humid forests[J]. Global Change Biology, 2017, 23(7): 2801-2817.
[45]
钟元, 郑嘉诚, 邱红岩, 等. 西藏东部阳坡和阴坡主要建群树种径向生长对极端干旱的响应差异[J]. 生态学报 2024, 44(3): 1-10.
ZHONG Y, ZHENG J C, QIU H Y, et al. Difference in response of radial growth to extreme droughts for the main constructive tree species on sunny and shady slopes in eastern Tibet[J]. Acta Ecologica Sinica, 2024, 44(3): 1-10. DOI: 10.20103/j.stxb.202303030390.
[46]
管增艳, 石松林, 金亚宁, 等. 四川峨眉山不同年龄冷杉径向生长对气候变化的响应差异[J]. 山地学报, 2023, 41(1): 56-67.
GUAN Z Y, SHI S L, JIN Y N, et al. Response of radial growth of Abies fabri at different ages to climate change in Mount Emei, Sichuan, China[J]. Mountain Research, 2023, 41(1): 56-67. DOI: 10.16089/j.cnki.1008-2786.000730.

基金

国家自然科学基金项目(32171778)
黑龙江省属科研院所科研业务费项目(CZKYF2024-1-B013)
黑龙江头雁创新团队计划(森林资源高效培育技术研发团队)

责任编辑: 李燕文
PDF(1784 KB)

Accesses

Citation

Detail

段落导航
相关文章

/