长期氮添加对兴安落叶松和水曲柳人工林根系磷获取策略的影响

尹天龙, 刘志, 任浩, 马耀远, 谷加存

南京林业大学学报(自然科学版) ›› 2026, Vol. 50 ›› Issue (1) : 150-159.

PDF(1942 KB)
PDF(1942 KB)
南京林业大学学报(自然科学版) ›› 2026, Vol. 50 ›› Issue (1) : 150-159. DOI: 10.12302/j.issn.1000-2006.202501024
研究论文

长期氮添加对兴安落叶松和水曲柳人工林根系磷获取策略的影响

作者信息 +

Effects of long-term nitrogen addition on root phosphorus acquisition strategy in Larix gmelinii and Fraxinus mandshurica plantations

Author information +
文章历史 +

摘要

【目的】 揭示长期氮(N)添加对我国东北地区人工林根系磷(P)获取策略的影响,为深入理解根系经济空间理论框架提供参考。【方法】以黑龙江省帽儿山地区兴安落叶松(Larix gmelinii)和水曲柳(Fraxinus mandshurica)人工林为对象,研究长期N添加对2树种土壤表层(0~10 cm)和亚表层(11~20 cm)根系磷酸酶活性(RPA)的影响,并分析RPA与根系形态、菌根侵染程度和根际土壤属性之间的联系。【结果】长期N添加下兴安落叶松和水曲柳根际土壤有效磷和磷酸酶活性有增加趋势。两树种RPA由1级根至3级根逐渐下降,但在土层间差异不显著。同一根序下,水曲柳RPA显著高于兴安落叶松。长期N添加导致兴安落叶松和水曲柳吸收根(前3级根)总RPA下降,尤其是在水曲柳1级根中差异显著。吸收根形态在长期N添加后也发生不同程度的变化,呈现出直径更细、组织密度更低的趋势。主成分分析显示两树种根系功能性状具有多维经济谱特征,两树种RPA与菌根侵染率、根际土壤有效P和磷酸酶活性呈负相关,而与比根长、比根表面积呈正相关,表明RPA在真菌协作维度(fungal collaboration gradient)的“自己动手”(do-it-yourself)策略上发挥作用。【结论】长期N添加后兴安落叶松和水曲柳人工林的P获取策略发生改变,根系变得细长,RPA和菌根侵染率降低,且这种影响在水曲柳人工林中更加明显。

Abstract

【Objective】 The objective of this study was to reveal the effects of long-term nitrogen (N) addition on root phosphorus (P) acquisition strategies of plantations in northeast China, providing a fundamental understanding in the framework of root economics space. 【Method】Following a 20-year N-addition manipulation in Larix gmelinii and Fraxinus mandshurica plantations in Maoershan, Heilongjiang Province, China, we investigated the effect of long-term N addition on root phosphatase activity (RPA) in the surface (0-10 cm) and subsurface (11-20 cm) soils, and explored the relationship between RPA and root morphology, mycorrhizal colonization rate, and rhizosphere soil properties. 【Result】Long-term nitrogen (N) addition promoted an increasing trend in rhizosphere soil available phosphorus and phosphatase activity for both L. gmelinii and F. mandshurica. Root phosphatase activity (RPA) progressively declined from first-to third-order roots in both species, though no significant differences were observed between soil layers. Within the same root order, F. mandshurica consistently exhibited higher RPA than L. gmelinii. Prolonged N addition significantly reduced the total RPA of absorptive roots (first three orders) in both species, with the most pronounced reduction occurring in the first-order roots of F. mandshurica. Additionally, absorptive roots displayed morphological adjustments under N enrichment, including finer root diameters and lower tissue density. Principal component analysis revealed multidimensional coordination of root functional traits, highlighting negative correlations between RPA and mycorrhizal colonization rate, rhizosphere available phosphorus, and bulk soil phosphatase activity, but positive correlations with specific root length and surface area. These patterns collectively indicate that RPA aligns with a “do-it-yourself” phosphorus acquisition strategy along the fungal collaboration gradient, favoring enzymatic investment over symbiotic dependency under N-enriched conditions. 【Conclusion】Collectively, after long-term N addition, the P acquisition strategies of the two trees changed, roots became slender, RPA and the mycorrhizal colonization rate decreased, which were more obvious in F. mandshurica plantations.

关键词

兴安落叶松 / 水曲柳 / 人工林 / 氮添加 / 磷酸酶 / 吸收根 / 根序

Key words

Larix gmelinii / Fraxinus mandshurica / plantations / nitrogen addition / phosphatase / absorptive root / root order

引用本文

导出引用
尹天龙, 刘志, 任浩, . 长期氮添加对兴安落叶松和水曲柳人工林根系磷获取策略的影响[J]. 南京林业大学学报(自然科学版). 2026, 50(1): 150-159 https://doi.org/10.12302/j.issn.1000-2006.202501024
YIN Tianlong, LIU Zhi, REN Hao, et al. Effects of long-term nitrogen addition on root phosphorus acquisition strategy in Larix gmelinii and Fraxinus mandshurica plantations[J]. Journal of Nanjing Forestry University (Natural Sciences Edition). 2026, 50(1): 150-159 https://doi.org/10.12302/j.issn.1000-2006.202501024
中图分类号: S718   

参考文献

[1]
DENTENER F, DREVET J, LAMARQUE J F, et al. Nitrogen and sulfur deposition on regional and global scales:a multimodel evaluation[J]. Global Biogeochemical Cycles, 2006, 20(4):2005GB002672.DOI: 10.1029/2005gb002672.
[2]
LIU X J, DUAN L, MO J M, et al. Nitrogen deposition and its ecological impact in China:an overview[J]. Environmental Pollution, 2011, 159(10):2251-2264.DOI: 10.1016/j.envpol.2010.08.002.
[3]
VITOUSEK P M, PORDER S, HOULTON B Z, et al. Terrestrial phosphorus limitation:mechanisms,implications,and nitrogen-phosphorus interactions[J]. Ecological Applications, 2010, 20(1):5-15.DOI: 10.1890/08-0127.1.
[4]
YUE K, FORNARA D A, LI W, et al. Nitrogen addition affects plant biomass allocation but not allometric relationships among different organs across the globe[J]. Journal of Plant Ecology, 2021, 14(3):361-371.DOI: 10.1093/jpe/rtaa100.
[5]
王文娜, 王燕, 王韶仲, 等. 氮有效性增加对细根解剖、形态特征和菌根侵染的影响[J]. 应用生态学报, 2016, 27(4):1294-1302.
WANG W N, WANG Y, WANG S Z, et al. Effects of elevated N availability on anatomy,morphology and mycorrhizal colonization of fine roots:a review[J]. Chinese Journal of Applied Ecology, 2016, 27(4):1294-1302.DOI: 10.13287/j.1001-9332.201604.032.
[6]
CHEN G T, TU L H, PENG Y, et al. Effect of nitrogen additions on root morphology and chemistry in a subtropical bamboo forest[J]. Plant and Soil, 2017, 412(1):441-451.DOI: 10.1007/s11104-016-3074-z.
[7]
耿鹏飞. 氮添加对红松人工林细根功能性状及生长动态的影响[D]. 哈尔滨: 东北林业大学, 2022.
GENG P F. Effects of N addition on functional traits and growth dynamics of fine roots in Korean pine plantation[D]. Harbin: Northeast Forestry University, 2022.DOI: 10.27009/d.cnki.gdblu.2022.001900.
[8]
KOU L, GUO D L, YANG H, et al. Growth,morphological traits and mycorrhizal colonization of fine roots respond differently to nitrogen addition in a slash pine plantation in subtropical China[J]. Plant and Soil, 2015, 391(1):207-218.DOI: 10.1007/s11104-015-2420-x.
[9]
JIANG L, WANG H M, LI S G, et al. A ‘Get-Save-Return’ process continuum runs on phosphorus economy among subtropical tree species[J]. Journal of Ecology, 2023, 111(4):861-874.DOI: 10.1111/1365-2745.14066.
[10]
ZHU X M, LAMBERS H, GUO W J, et al. Extraradical hyphae exhibit more plastic nutrient-acquisition strategies than roots under nitrogen enrichment in ectomycorrhiza-dominated forests[J]. Global Change Biology, 2023, 29(16):4605-4619.DOI: 10.1111/gcb.16768.
[11]
ELSER J J, BRACKEN M E S, CLELAND E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater,marine and terrestrial ecosystems[J]. Ecology Letters, 2007, 10(12):1135-1142.DOI: 10.1111/j.1461-0248.2007.01113.x.
[12]
TIAN D, DU E Z, JIANG L, et al. Responses of forest ecosystems to increasing N deposition in China:a critical review[J]. Environmental Pollution, 2018, 243:75-86.DOI: 10.1016/j.envpol.2018.08.010.
[13]
DU E Z, TERRER C, PELLEGRINI A F A, et al. Global patterns of terrestrial nitrogen and phosphorus limitation[J]. Nature Geoscience, 2020, 13(3):221-226.DOI: 10.1038/s41561-019-0530-4.
[14]
何敏, 许秋月, 夏允, 等. 植物磷获取机制及其对全球变化的响应[J]. 植物生态学报, 2023, 47(3):291-305.
HE M, XU Q Y, XIA Y, et al. Plant phosphorus acquisition mechanisms and their response to global climate changes[J]. Chinese Journal of Plant Ecology, 2023, 47(3):291-305.DOI: 10.17521/cjpe.2021.0451.
[15]
LYNCH J P, BROWN K M. Topsoil foraging:an architectural adaptation of plants to low phosphorus availability[J]. Plant and Soil, 2001, 237(2):225-237.DOI: 10.1023/A:1013324727040.
[16]
LAMBERS H, RAVEN J A, SHAVER G R, et al. Plant nutrient-acquisition strategies change with soil age[J]. Trends in Ecology & Evolution, 2008, 23(2):95-103.DOI: 10.1016/j.tree.2007.10.008.
[17]
SÁNCHEZ-CALDERÓN L, CHACON-LÓPEZ A, PÉREZ-TORRES C A, et al. Phosphorus:plant strategies to cope with its scarcity[J]. Plant Cell Monographs, 2010, 17:173-198.
[18]
ZHAO X X, TIAN Q X, HUANG L, et al. Fine-root functional trait response to nitrogen deposition across forest ecosystems:a meta-analysis[J]. Science of The Total Environment, 2022, 844:157111.DOI: 10.1016/j.scitotenv.2022.157111.
[19]
MA X M, ZHU B, NIE Y X, et al. Root and mycorrhizal strategies for nutrient acquisition in forests under nitrogen deposition:a meta-analysis[J]. Soil Biology and Biochemistry, 2021, 163:108418.DOI: 10.1016/j.soilbio.2021.108418.
[20]
MARKLEIN A R, HOULTON B Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems[J]. New Phytologist, 2012, 193(3):696-704.DOI: 10.1111/j.1469-8137.2011.03967.x.
[21]
HIRANO Y, KITAYAMA K, IMAI N. Interspecific differences in the responses of root phosphatase activities and morphology to nitrogen and phosphorus fertilization in Bornean tropical rain forests[J]. Ecology and Evolution, 2022, 12(3):e8669.DOI: 10.1002/ece3.8669.
[22]
LUGLI L F, ROSA J S, ANDERSEN K M, et al. Rapid responses of root traits and productivity to phosphorus and cation additions in a tropical lowland forest in Amazonia[J]. New Phytologist, 2021, 230(1):116-128.DOI: 10.1111/nph.17154.
[23]
贾淑霞, 王政权, 梅莉, 等. 施肥对落叶松和水曲柳人工林土壤呼吸的影响[J]. 植物生态学报, 2007, 31(3):372.
JIA S X, WANG Z Q, MEI L, et al. Effect of nitrogen fertilization on soil respiration in Larix gmelinii and Fraxinus mandshurica plantations in China[J]. Chinese Journal of Plant Ecology, 2007, 31(3):372. DOI: 10.17521/cjpe.2007.0045.
[24]
YANG K, ZHU J J, GU J C, et al. Changes in soil phosphorus fractions after 9 years of continuous nitrogen addition in a Larix gmelinii plantation[J]. Annals of Forest Science, 2015, 72(4):435-442.DOI: 10.1007/s13595-014-0444-7.
[25]
WANG W N, WANG Y, HOCH G, et al. Linkage of root morphology to anatomy with increasing nitrogen availability in six temperate tree species[J]. Plant and Soil, 2018, 425(1):189-200.DOI: 10.1007/s11104-018-3563-3.
[26]
赵凯歌, 周正虎, 金鹰, 等. 长期氮添加对落叶松和水曲柳人工林土壤碳、氮、磷含量和胞外酶活性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(5):177-184.
ZHAO K G, ZHOU Z H, JIN Y, et al. Effects of long-term nitrogen addition on soil carbon,nitrogen,phosphorus and extracellular enzymes in Larix gmelinii and Fraxinus mandshurica plantations[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2022, 46(5):177-184.DOI: 10.12302/j.issn.1000-2006.202108018.
[27]
HUANG S N, WANG F, ELLIOTT E M, et al. Multiyear measurements on Δ17O of stream nitrate indicate high nitrate production in a temperate forest[J]. Environmental Science & Technology, 2020, 54(7):4231-4239.DOI: 10.1021/acs.est.9b07839.
[28]
PREGITZER K S, DEFOREST J L, BURTON A J, et al. Fine root architecture of nine north American trees[J]. Ecological Monographs, 2002, 72(2):293.DOI: 10.2307/3100029.
[29]
BURTON A, PREGITZER K, RUESS R, et al. Root respiration in north American forests:effects of nitrogen concentration and temperature across biomes[J]. Oecologia, 2002, 131(4):559-568.DOI: 10.1007/s00442-002-0931-7.
[30]
DING Z J, TANG M, CHEN X, et al. Measuring rhizosphere effects of two tree species in a temperate forest:a comprehensive method comparison[J]. Rhizosphere, 2019, 10:100153.DOI: 10.1016/j.rhisph.2019.100153.
[31]
WANG Y N, GAO G Q, WANG N, et al. Effects of morphology and stand structure on root biomass and length differed between absorptive and transport roots in temperate trees[J]. Plant and Soil, 2019, 442(1):355-367.DOI: 10.1007/s11104-019-04206-7.
[32]
WANG Y, LI Z Y, WANG Z Q, et al. Functional trait plasticity but not coordination differs in absorptive and transport fine roots in response to soil depth[J]. Forests, 2020, 11(1):42.DOI: 10.3390/f11010042.
[33]
FRESCHET G T, ROUMET C, COMAS L H, et al. Root traits as drivers of plant and ecosystem functioning:current understanding,pitfalls and future research needs[J]. New Phytologist, 2021, 232(3):1123-1158.DOI: 10.1111/nph.17072.
[34]
VIERHEILIG H, PICHÉ Y. A modified procedure for staining arbuscular mycorrhizal fungi in roots[J]. Zeitschrift Für Pflanzenernährung und Bodenkunde, 1998, 161(5):601-602.DOI: 10.1002/jpln.1998.3581610515.
[35]
WAN W J, HE D L, LI X, et al. Adaptation of phoD-harboring bacteria to broader environmental gradients at high elevations than at low elevations in the Shennongjia primeval forest[J]. Geoderma, 2021, 401:115210.DOI: 10.1016/j.geoderma.2021.115210.
[36]
AO G, FENG J G, HAN M G, et al. Responses of root and soil phosphatase activity to nutrient addition differ between primary and secondary tropical montane forests[J]. Rhizosphere, 2022, 24:100610.DOI: 10.1016/j.rhisph.2022.100610.
[37]
TURNER B L. Resource partitioning for soil phosphorus:a hypothesis[J]. Journal of Ecology, 2008, 96(4):698-702.DOI: 10.1111/j.1365-2745.2008.01384.x.
[38]
HAN M G, CHEN Y, LI R, et al. Root phosphatase activity aligns with the collaboration gradient of the root economics space[J]. New Phytologist, 2022, 234(3):837-849.DOI: 10.1111/nph.17906.
[39]
GENG P F, JIN G Z. Fine root morphology and chemical responses to N addition depend on root function and soil depth in a Korean pine plantation in northeast China[J]. Forest Ecology and Management, 2022, 520:120407.DOI: 10.1016/j.foreco.2022.120407.
[40]
HUANG J, ZHANG W, LI Y L, et al. Long-term nitrogen deposition does not exacerbate soil acidification in tropical broadleaf plantations[J]. Environmental Research Letters, 2021, 16(11):114042.DOI: 10.1088/1748-9326/ac30bd.
[41]
TIAN J, DUNGAIT J A J, LU X K, et al. Long-term nitrogen addition modifies microbial composition and functions for slow carbon cycling and increased sequestration in tropical forest soil[J]. Global Change Biology, 2019, 25(10):3267-3281.DOI: 10.1111/gcb.14750.
[42]
WANG R Z, YANG J J, LIU H Y, et al. Nitrogen enrichment buffers phosphorus limitation by mobilizing mineral-bound soil phosphorus in grasslands[J]. Ecology, 2022, 103(3):e3616.DOI: 10.1002/ecy.3616.
[43]
CHEN J, VAN GROENIGEN K J, HUNGATE B A, et al. Long-term nitrogen loading alleviates phosphorus limitation in terrestrial ecosystems[J]. Global Change Biology, 2020, 26(9):5077-5086.DOI: 10.1111/gcb.15218.
[44]
GUO D L, XIA M X, WEI X, et al. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species[J]. New Phytologist, 2008, 180(3):673-683.DOI: 10.1111/j.1469-8137.2008.02573.x.
[45]
LUKE MCCORMACK M, DICKIE I A, EISSENSTAT D M, et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes[J]. New Phytologist, 2015, 207(3):505-518.DOI: 10.1111/nph.13363.
[46]
JIAN S Y, LI J W, CHEN J, et al. Soil extracellular enzyme activities,soil carbon and nitrogen storage under nitrogen fertilization:a meta-analysis[J]. Soil Biology and Biochemistry, 2016, 101:32-43.DOI: 10.1016/j.soilbio.2016.07.003.
[47]
BARROW N J. Comparing two theories about the nature of soil phosphate[J]. European Journal of Soil Science, 2021, 72(2):679-685.DOI: 10.1111/ejss.13027.
[48]
YANG Y, ZHANG X Y, WANG J, et al. Phosphorus acquisition strategies of arbuscular mycorrhizal and ectomycorrhizal trees in subtropical plantations[J]. European Journal of Soil Science, 2022, 73(5):e13303.DOI: 10.1111/ejss.13303.
[49]
于立忠, 丁国泉, 史建伟, 等. 施肥对日本落叶松人工林细根直径、根长和比根长的影响[J]. 应用生态学报, 2007, 18(5):957-962.
YU L Z, DING G Q, SHI J W, et al. Effect of fertilization on fine root diameter, root length, and specific root length in Larix kaempferi plantation[J]. Chinese Journal of Applied Ecology, 2007, 18(5):957-962. DOI: 10.3321/j.issn:1001-9332.2007.05.003.
[50]
刘金梁, 梅莉, 谷加存, 等. 内生长法研究施氮肥对水曲柳和落叶松细根生物量和形态的影响[J]. 生态学杂志, 2009, 28(1):1-6.
LIU J L, MEI L, GU J C, et al. Effects of nitrogen fertilization on fine root biomass and morphology of Fraxinus mandshurica and Larix gmelinii:a study with in-growth core approach[J]. Chinese Journal of Ecology, 2009, 28(1):1-6.
[51]
YU G C, CHEN J, YU M X, et al. Eighteen-year nitrogen addition does not increase plant phosphorus demand in a nitrogen-saturated tropical forest[J]. Journal of Ecology, 2023, 111(7):1545-1560.DOI: 10.1111/1365-2745.14118.
[52]
TRESEDER K K. A meta-analysis of mycorrhizal responses to nitrogen,phosphorus,and atmospheric CO2 in field studies[J]. New Phytologist, 2004, 164(2):347-355.DOI: 10.1111/j.1469-8137.2004.01159.x.
[53]
BERGMANN J, WEIGELT A, VAN DER PLAS F, et al. The fungal collaboration gradient dominates the root economics space in plants[J]. Science Advances, 2020, 6(27):eaba3756.DOI: 10.1126/sciadv.aba3756.
[54]
REN H, GAO G Q, MA Y Y, et al. Shift of root nitrogen-acquisition strategy with tree age is mediated by root functional traits along the collaboration gradient of the root economics space[J]. Tree Physiology, 2023, 43(8):1341-1353.DOI: 10.1093/treephys/tpad047.
[55]
RAVEN J A, LAMBERS H, SMITH S E, et al. Costs of acquiring phosphorus by vascular land plants:patterns and implications for plant coexistence[J]. New Phytologist, 2018, 217(4):1420-1427.DOI: 10.1111/nph.14967.
[56]
LYNCH J P, HO M D. Rhizoeconomics:carbon costs of phosphorus acquisition[J]. Plant and Soil, 2005, 269(1):45-56.DOI: 10.1007/s11104-004-1096-4.

基金

国家重点研发计划(2024YFD2200401)
国家自然科学基金项目(32071749)

责任编辑: 孟苗婧
PDF(1942 KB)

Accesses

Citation

Detail

段落导航
相关文章

/