湿地松×加勒比松杂交种未成熟合子胚诱导体细胞胚胎发生

李峰卿, 陈金慧, 施季森

南京林业大学学报(自然科学版) ›› 2026, Vol. 50 ›› Issue (1) : 23-32.

PDF(8448 KB)
PDF(8448 KB)
南京林业大学学报(自然科学版) ›› 2026, Vol. 50 ›› Issue (1) : 23-32. DOI: 10.12302/j.issn.1000-2006.202503011
专题报道(Ⅰ):发展林业新质生产力系列专题——林木体细胞胚胎发生专题(二)

湿地松×加勒比松杂交种未成熟合子胚诱导体细胞胚胎发生

作者信息 +

Somatic embryogenesis of the new hybrid between Pinus elliottii and P. caribaea induced from immuture embryos

Author information +
文章历史 +

摘要

【目的】 对湿地松×加勒比松(Pinus elliottii × P. caribaea)杂交种体细胞胚胎发生的影响因子进行研究,探究不同发育阶段各因子在体细胞胚发生过程中的作用,为建立高效的体细胞胚发生体系,并规模化生产应用提供技术支撑。【方法】以4个杂交组合的湿地松×加勒比松杂交种未成熟合子胚为材料,分析影响胚性愈伤组织诱导的主要因素:基因型、合子胚发育阶段、基本培养基、激素种类和浓度等,筛选生长状态良好的胚性愈伤组织,进行体细胞胚成熟、萌发及植株再生研究,最终获得再生植株。【结果】基因型、合子胚发育阶段、基本培养基和激素组合及浓度等因子均对胚性愈伤组织诱导有显著影响。6月9—23日即裂生多胚至子叶前期阶段为外植体的最佳采集时期,最佳的胚性愈伤组织诱导培养基为DCR+2.0 mg/L 2,4-D+1.0 mg/L BA+0.5 mg/L KT,平均诱导率为19.51%;最佳胚性愈伤组织继代与增殖培养基为改良P6+0.8 m/L 2,4-D+0.5 mg/L BA+0.5 mg/L KT;体细胞胚成熟最佳培养基为改良P6+10.0 mg/L ABA+10.0 mg/L GA+0.2 mg/L 2,4-D+4 000 mg/L 肌醇+2.0 g/L活性炭,成熟培养周期为6~7 周,每mL 密实细胞体积(packed cell volume,PCV)胚性愈伤组织可诱导产生298个成熟体细胞胚;干化处理抑制了体细胞胚的萌发,最佳萌发培养基为1/2 DCR+0.2 mg/L NAA+0.5 mg/L BA+2.0 g/L 活性炭;再将正常萌发的体细胞胚在1/2 DCR +0.1 mg/L NAA+0.5 mg/L BA+2.5 g/L 活性炭培养基上转接培养至长出真叶,苗高3~4 cm时,即可移栽至河沙、珍珠岩、泥炭土体积比为1∶1∶1的基质中,1月后可生长成7~8 cm健壮植株。【结论】通过改进和优化,提出一种更高效的固-液-固交替培养方法,建立完整、高效的湿地松×加勒比松杂交种体细胞胚发生体系,为杂交种的大规模繁殖提供了基础平台,在造林、遗传保护和基于生物反应器的繁殖系统中具有较高应用价值。

Abstract

【Objective】 The large-scale production and application of the new Pinus elliottii × P. caribaea hybrid requires the application of an efficient somatic embryogenesis system. Immature zygotic embryos were used as explants to investigate which key factors influence somatic embryogenesis during embryogenic callus induction, proliferation, maturation, germination and plantlet acclimatization,establishing a comprehensive protocol for efficient SE propagation of this economically important hybrid.【Method】A total of four representative genotyes of Pinus elliottii × P. caribea were used as starting material to investigate the main factors that affect the induction of embryogenic callus: including genotype, zygotic embryo developmental stage (June 2nd to 23 rd), basic culture medium(DCR, LP, MSG and BM), hormone type and concentration, etc. Well developing embryogenic callus was analyzed for somatic embryo maturation, germination and plant regeneration. Ultimately, regenerated plants were obtained.【Result】All investigated factors (genotype, developmental stage, basic culture medium, hormone (PGR) combination and concentration) were found to have significant effects on embryogenic callus induction. The optimal time to collect explants was from June 9th to 23rd: the multi-embryo division to early cotyledon stage. The optimal embryogenic callus induction medium is DCR with 2.0 mg/L 2,4-D,1.0 mg/L BA and 0.5 mg/L KT. The average induction rate was 19.51%. To maintain the embryonic callus in a proliferative state, capable of differentiation, for a prolonged amount of time, a solid-liquid alternating culture protocol and reduced hormone concentration in the proliferation medium was required. The optimal proliferation medium was modified P6, supplemented with 0.8 mg/L 2,4-D, 0.5 mg/L BA and 0.5 mg/L KT on the solid culture medium and in the first-time liquid culture medium. During the subsequent liquid culture process, the hormone concentration should be gradually reduced. The optimal culture media for somatic embryo maturation was modified P6, with 10.0 mg/L ABA, 10.0 mg/L GA, 0.2 mg/L 2,4-D, 4 000 mg/L inositol and 2.0 mg/L activated carbon(AC). 298 mature somatic embryos were induced per mL of packed cell volume (PCV) embryogenic callus at the maturation culture cycle (6-7 weeks). Drying treatment inhibited the germination of somatic embryos, and the germination rate was best when cultured on 1/2 DCR, supplemented with 0.2 mg/L NAA, 0.5 mg/L BA and 2.0 mg/L activated carbon. Successfully germinating somatic embryos were transferred to the following medium for further cultivation until they reached 3-4 cm in height with true leaves: 1/2 DCR + 0.1 mg/L NAA+ 0.5 mg/L BA +2.5 g/L AC. Finally, the matured plantlets were transplanted and hardened onto a volume ratio of 1∶1∶1 of river sand∶perlite∶peat soil substrate and grown into robust 7-8 cm tall plants over the course of one month. 【Conclusion】In this study a complete and efficient somatic embryogenesis system for the P. elliottii × P. caribaea hybrid has been established. Furthermore, a more efficient method for embryogenic callus maintenance, using solid-liquid-solid alternating culture, has been developed. This system provides a foundational platform for large-scale clonal propagation of hybrid, with potential applications in forestation, genetic conservation, and bioreactor-based propagation systems.

关键词

湿地松×加勒比松杂交种 / 胚性愈伤组织 / 体细胞胚 / 植株再生

Key words

Pinus elliottii × P. caribaea hybrid / embryogenic callus / somatic embryogenesis / plantlet regeneration

引用本文

导出引用
李峰卿, 陈金慧, 施季森. 湿地松×加勒比松杂交种未成熟合子胚诱导体细胞胚胎发生[J]. 南京林业大学学报(自然科学版). 2026, 50(1): 23-32 https://doi.org/10.12302/j.issn.1000-2006.202503011
LI Fengqing, CHEN Jinhui, SHI Jisen. Somatic embryogenesis of the new hybrid between Pinus elliottii and P. caribaea induced from immuture embryos[J]. Journal of Nanjing Forestry University (Natural Sciences Edition). 2026, 50(1): 23-32 https://doi.org/10.12302/j.issn.1000-2006.202503011
中图分类号: S722   

参考文献

[1]
郝兆东, 马筱筱, 衡柳宏, 等. 鹅掌楸3个LcPIN1同源基因在体胚发生中的表达模式和功能分析[J]. 南京林业大学学报(自然科学版). 2025, 49(4): 57-70.
HAO Z D, MA X X, HENG L H, et al. Expression patterns and functional analysis of three Liriodendron chinense PIN1 homologous genes in somatic embryogenesis[J]. Journal of Nanjing Forestry University (Natural Sciences Edition). 2025, 49(4): 57-70.DOI:10.12302/j.issn.1000-2006.202504009.
[2]
ZHU L H, CHU X F, SUN T Y, et al. Micropropagation of Pinus densiflora and the evaluation of nematode resistance of regenerated microshoots in vitro[J]. Journal of Forestry Research, 2019, 30(2):519-528.DOI: 10.1007/s11676-018-0681-y.
[3]
FEI Q, CHEN Y M, KE X, et al. Somatic embryogenesis of slash pine (Pinus elliottii Engelm.):initiation,maturation,germination and mycorrhization of regenerated plantlets[J]. Plant Cell,Tissue and Organ Culture, 2024, 157(3):65.DOI: 10.1007/s11240-024-02789-3.
[4]
WANG D D, GUO Y L, LONG X F, et al. Exogenous spermidine promotes somatic embryogenesis of Cunninghamia lanceolata by altering the endogenous phytohormone content[J]. Phyton, 2020, 89(1):27-34.DOI: 10.32604/phyton.2020.08971.
[5]
MARTÍNEZ M, CORREDOIRA E. Recent advances in plant somatic embryogenesis:where we stand and where to go?[J]. International Journal of Molecular Sciences, 2024, 25(16):8912.DOI: 10.3390/ijms25168912.
[6]
HAKMAN I, FOWKE I C, Arnold V S, et al. The development of somatic embryos in tissue cultures initiated from immature embryos of Picea abies Norway spruce[J]. Plant Sci, 1985, 38(3):53-59. DOI:10.1016/0168-9452(85)90079-2.
[7]
施季森. 迎接21世纪现代林木生物技术育种的挑战[J]. 中国农业科技导报, 2000, 2(1):36-41.
SHI J S. The challenges to forestry biotechnology and tree breeding in the 21st century[J]. Journal of Agricultural Science and Technology, 2000, 2(1):36-41.
[8]
宗亦臣, 郑勇奇, 马锡权, 等. 湿加松良种‘中林1号’[J]. 湖南林业科技, 2017, 44(1):76-77.
ZONG Y C, ZHENG Y Q, MA X Q, et al. An elite variety of Pinus elliottii × P.caribaea var. hondurensis ‘Zhonglin 1’[J]. Hunan Forestry Science & Technology, 2017, 44(1):76-77.DOI: 10.3969/j.issn.1003-5710.2017.01.015.
[9]
胡继文, 郭文冰, 邓乐平, 等. 湿地松及其杂种的体细胞胚胎发生与植株再生[J]. 华南农业大学学报, 2019, 40(1):107-115.
HU J W, GUO W B, DENG L P, et al. Somatic embryogenesis and plantlet regeneration in Pinus elliottii and its hybrids[J]. Journal of South China Agricultural University, 2019, 40(1):107-115.DOI: 10.7671/j.issn.1001-411X.201804001.
[10]
NUNES S, MARUM L, FARINHA N, et al. Somatic embryogenesis of hybrid Pinus elliottii var. elliottii × P.caribaea var. hondurensis and ploidy assessment of somatic plants[J]. Plant Cell,Tissue and Organ Culture (PCTOC), 2018, 132(1):71-84.DOI: 10.1007/s11240-017-1311-7.
[11]
LI F Q, YAO J B, HU L F, et al. Multiple methods synergistically promote the synchronization of somatic embryogenesis through suspension culture in the new hybrid between Pinus elliottii and Pinus caribaea[J]. Frontiers in Plant Science, 2022, 13:857972.DOI: 10.3389/fpls.2022.857972.
[12]
胡珊, 杨春霞, 古振军, 等. 火炬松体细胞胚胎发生体系的优化[J]. 林业科学研究, 2022, 35(3):9-17.
HU S, YANG C X, GU Z J, et al. Optimization of somatic embryogenesis for Pinus taeda[J]. Scientia Silvae Sinicae, 2022, 5(3):9-17.DOI:10.13275/j.cnki.lykxyj.2022.03.002
[13]
CHESICK E E, MOHN C A, HACKETT W P. Plantlet multiplication from white pine (Pinus strobus L.) embryos in vitro:bud induction and rooting[J]. Plant Cell,Tissue and Organ Culture, 1991, 26(2):107-114.DOI: 10.1007/BF00036114.
[14]
张建伟, 王军辉, 李青粉, 等. 云杉未成熟合子胚诱导体细胞胚胎发生[J]. 林业科学, 2014, 50(4):39-46.
ZHANG J W, WANG J H, LI Q F, et al. Somatic embryogenesis of Picea asperata induced from immature embryos[J]. Scientia Silvae Sinicae, 2014, 50(4):39-46. DOI:10.11707/j.1001-7488.20140406.
[15]
程方, 孙婷玉, 叶建仁. 抗松针褐斑病湿地松未成熟合子胚胚性愈伤组织的诱导[J]. 南京林业大学学报(自然科学版), 2023, 47(6):175-182.
CHENG F, SUN T Y, YE J R. Induction of embryogenic callus from immature zygotic embryos of Pinus elliottii resistant to brown spot needle blight (pathogen:Lecanosticta acicola)[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2023, 47(6):175-182.DOI: 10.12302/j.issn.1000-2006.202203002.
[16]
LELU-WALTER M A, BERNIER-CARDOU M, KLIMASZEWSKA K. Simplified and improved somatic embryogenesis for clonal propagation of Pinus pinaster (Ait.)[J]. Plant Cell Reports, 2006, 25(8):767-776.DOI: 10.1007/s00299-006-0115-8.
[17]
STASOLLA C, YEUNG E C. Recent advances in conifer somatic embryogenesis:improving somatic embryo quality[J]. Plant Cell,Tissue and Organ Culture, 2003, 74(1):15-35.DOI: 10.1023/A:1023345803336.
[18]
刘建飞, 刘炎, 刘克俭, 等. 长白落叶松体胚发生再生体系优化[J]. 植物学报, 2020, 55(5):605-612.
LIU J F, LIU Y, LIU K J, et al. Optimization of the regeneration system from somatic embryogenesis in Larix olgensis[J]. Chinese Bulletin of Botany, 2020, 55(5):605-612. DOI:10.11983/CBB20030.
[19]
PASSAMANI L Z, REIS R S, VALE E M, et al. Long-term culture with 2,4-dichlorophenoxyacetic acid affects embryogenic competence in sugarcane callus via changes in starch,polyamine and protein profiles[J]. Plant Cell,Tissue and Organ Culture, 2020, 140(2):415-429.DOI: 10.1007/s11240-019-01737-w.
[20]
宋跃, 甄成, 张含国, 等. 长白落叶松胚性愈伤组织诱导及体细胞胚胎发生[J]. 林业科学, 2016, 52(10):45-54.
SONG Y, ZHEN C, ZHANG H G, et al. Embryogenic callus induction and somatic embryogenesis from immature zygotic embryos of Larix olgensis[J]. Scientia Silvae Sinicae, 2016, 52(10):45-54.DOI: 10.11707/j.1001-7488.20161006.
[21]
任毓辉, 聂帅, 彭春雪, 等. 红松胚性愈伤组织增殖的激素配比、糖源类型和增殖周期效应研究[J]. 植物研究, 2022, 42(4):704-712.
REN Y H, NIE S, PENG C X, et al. Effects of hormone combinations,carbon source type and proliferation cycle on embryogenic callus proliferation of Pinus koraiensis[J]. Bulletin of Botanical Research, 2022, 42(4):704-712. DOI:10.7525/j.issn.1673-5102.2022.04.020.
[22]
PLACKOVÁ L, HRDLICKA J, SMYKALOVÁ I, et al. Cytokinin profiling of long-term in vitro pea (Pisum sativum L.) shoot cultures[J]. Plant Growth Regulation, 2015, 77(2):125-132.DOI: 10.1007/s10725-015-0044-z.
[23]
RAI M K, SHEKHAWAT N S, HARISH, et al. The role of abscisic acid in plant tissue culture:a review of recent progress[J]. Plant Cell,Tissue and Organ Culture, 2011, 106(2):179-190.DOI: 10.1007/s11240-011-9923-9.
[24]
SUN T Y, WANG Y L, ZHU L H, et al. Plant regeneration by somatic embryogenesis in Pinus thunbergii resistant to the pine wood nematode[J]. Canadian Journal of Forest Research, 2019, 49(12):1604-1612.DOI: 10.1139/cjfr-2018-0522.
[25]
PULLMAN G S, ZHANG Y, PHAN B H. Brassinolide improves embryogenic tissue initiation in conifers and rice[J]. Plant Cell Reports, 2003, 22(2):96-104.DOI: 10.1007/s00299-003-0674-x.
[26]
PITEL J A, YOO B Y, KLIMASZEWSKA K, et al. Changes in enzyme activity and protein patterns during the maturation phase of somatic embryogenesis in hybrid larch (Larix × eurolepis)[J]. Canadian Journal of Forest Research, 1992, 22(4):553-560.DOI: 10.1139/x92-073.

基金

国家重点研发计划(2023YFD2200903)
中央财政林业科技推广示范项目(JXTG[2025]01)

责任编辑: 吴祝华
PDF(8448 KB)

Accesses

Citation

Detail

段落导航
相关文章

/