利用间歇浸没式生物反应器进行橡胶树体胚诱导和增殖研究

李仕代, 戴雪梅, 顾晓川, 明雄佳, KONG Lisheng, 黄天带

南京林业大学学报(自然科学版) ›› 2026, Vol. 50 ›› Issue (1) : 41-49.

PDF(5796 KB)
PDF(5796 KB)
南京林业大学学报(自然科学版) ›› 2026, Vol. 50 ›› Issue (1) : 41-49. DOI: 10.12302/j.issn.1000-2006.202504017
专题报道(Ⅰ):发展林业新质生产力系列专题——林木体细胞胚胎发生专题(二)

利用间歇浸没式生物反应器进行橡胶树体胚诱导和增殖研究

作者信息 +

Induction and proliferation of somatic embryos of rubber tree in temporary immersion bioreactors

Author information +
文章历史 +

摘要

【目的】 建立基于间歇浸没式生物反应器(RITA®)的橡胶树高效体胚发生和增殖体系,为橡胶树体胚苗规模化繁殖奠定基础。【方法】以橡胶树‘热研7-33-97’(Hevea brasiliensis cv. Reyan 7-33-97)花药愈伤组织及次生体胚发生过程中球形胚、心形胚和鱼雷形胚为试验材料,比较RITA®与固体培养的体胚诱导率、正常胚形成率、体胚萌发率及再生率差异,并检测和分析2种培养方式在体胚发育过程中可溶性糖、蛋白质和淀粉含量的变化。【结果】RITA®结合M5培养基,体胚诱导率和诱导系数均显著提高,分别为90%和2.55,正常胚形成率则以RITA®-M4组合最优(40.95%),其余组合无显著差异。在体胚进一步发育过程中,心形胚和鱼雷形胚通过RITA®培养获得的体胚总数和正常胚数均显著高于固体培养,其中鱼雷形胚获得的结果优于心形胚,分别约为153和128,球形胚则更适应固体培养环境;在体胚萌发阶段,RITA®培养显著提高了体胚萌发率,且明显缩短了萌发时间。分析可溶性糖、蛋白质和淀粉含量的变化可知,RITA®培养在多个关键发育阶段具有更高的代谢活性和能量储备效率,为加速体胚成熟和促进体胚萌发提供生理基础。【结论】RITA®培养显著促进橡胶树体胚中后期的发育和成熟,提升体胚质量,缩短再生周期,宜采用“早期固体-中后期RITA®”分阶段培养模式进行橡胶树次生体胚增殖和体胚苗规模化生产。

Abstract

【Objective】Hevea brasiliensis (rubber tree) plantlets derived from somatic embryogenesis demonstrate enhanced growth vigor and yield potential compared to conventionally grafted seedlings, representing a promising material for the renewal and modernization of rubber plantations. This study aims to establish an efficient system for somatic embryogenesis and proliferation in the rubber tree cultivar ‘Reyan 7-33-97’ using a temporary immersion bioreactor (RITA®), with the goal of improving the production efficiency of somatic embryos and providing a technical foundation for large-scale propagation of high-quality plantlets.【Method】Anther-derived callus and secondary somatic embryos at the globular, heart and torpedo stages were used as experimental materials. Three distinct medium formulations were evaluated for somatic embryo induction from anther-derived calli under both solid and RITA®-based culture conditions. Parameters including somatic embryo induction rate, normal embryo formation rate, germination rate, and plant regeneration rate were systematically compared between the two culture systems. In addition, dynamic changes in key physiological indicators—soluble sugar, protein, and starch—were detected and analyzed throughout the somatic embryogenesis process.【Result】The effectiveness of the RITA® system was highly dependent on the medium composition and the developmental stage of the embryos. During the induction of somatic embryos from anther-derived callus, most combinations of culture methods and media showed no significant differences in the embryo induction coefficient or normal embryo formation rate. However, the RITA®-M5 combination significantly increased the embryo induction rate to 90% and the induction coefficient to 2.55. The highest normal embryo formation rate (40.95%) was achieved using the RITA®-M4 medium. In subsequent developmental stages, hear-stage and torpedo-stage embryos cultured in the RITA® system produced significantly higher numbers of both total and normal somatic embryos compared to solid culture. Torpedo-stage embryos exhibited superior performance relative to heart-stage embryos, yielding totals of 153 and 128 somatic embryos and normal embryos, respectively. In contrast, globular-stage embryos were better adapted to solid culture conditions. Although the total number of somatic embryos induced under RITA® was not significantly different from that under solid culture, the normal embryo formation rate was significantly higher under solid culture (49.03%) than under RITA® (32.30%). During germination, the RITA® system significantly shortened the time required for germination. By day ten, the germination rate under RITA® was nearly 20% higher than that under solid culture, and the shoots emerging from RITA®-cultured embryos were significantly longer. After one month, although no statistically significant difference in plant regeneration rate was observed between the two systems, the RITA® group still exhibited a numerical advantage. Physiological analyses revealed generally similar trends in soluble sugar, protein, and starch content under both culture systems. However, RITA® promoted more rapid consumption of soluble sugars at the heart-shaped stage and supported more efficient accumulation of proteins and starch, providing a physiological basis for accelerated embryo maturation and improved germination efficiency. 【Conclusion】A relatively efficient system for somatic embryo induction and proliferation in rubber tree has been established using the RITA® temporary immersion culture system. This study elucidates the physiological mechanisms by which RITA® enhances somatic embryo maturation and germination, thereby providing both theoretical and technical support for the large-scale propagation of somatic embryo-derived plantlets in H. brasiliensis. Given that RITA® primarily promotes development and germination from the heart stage onward, while the globular stage remains more suitable for solid culture, a phased culture strategy—“solid culture for early stages, followed by RITA® in the mid-to-late stages”—is recommended for the secondary somatic embryo proliferation and large-scale production of somatic plantlets in rubber tree.

关键词

橡胶树 / 花药愈伤组织 / 次生体胚发生 / 固体培养 / 间歇浸没培养 / 生物反应器

Key words

Hevea brasiliensis (rubber tree) / anther callus / secondary somatic embryogenesis / solid culture / temporary immersion culture / bioreactor

引用本文

导出引用
李仕代, 戴雪梅, 顾晓川, . 利用间歇浸没式生物反应器进行橡胶树体胚诱导和增殖研究[J]. 南京林业大学学报(自然科学版). 2026, 50(1): 41-49 https://doi.org/10.12302/j.issn.1000-2006.202504017
LI Shidai, DAI Xuemei, GU Xiaochuan, et al. Induction and proliferation of somatic embryos of rubber tree in temporary immersion bioreactors[J]. Journal of Nanjing Forestry University (Natural Sciences Edition). 2026, 50(1): 41-49 https://doi.org/10.12302/j.issn.1000-2006.202504017
中图分类号: S722   

参考文献

[1]
李尹, 于丝浓, 严灵君, 等. 欧洲小叶椴体细胞胚胎发生及植株再生体系建立[J]. 南京林业大学学报 (自然科学版), 2025, 49(4): 79-87.
LI Y, YU S N, YAN L J, et al. Plant regeneration through somatic embryogenesis in Tilia cordata[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2025, 49(4): 79-87. DOI: 10.12302/j.issn.1000-2006.202411019.
[2]
ZHANG J J, HAO Z D, RUAN X X, et al. Role of BABY BOOM transcription factor in promoting somatic embryogenesis and genetic transformation in a woody magnoliid Liriodendron[J]. Plant,Cell & Environment, 2025, 48(7):4859-4872. DOI:10.1111/pce.15483.
[3]
LONG X F, ZHANG J J, WANG D D, et al. Expression dynamics of WOX homeodomain transcription factors during somatic embryogenesis in Liriodendron hybrids[J]. Forestry Research, 2023, 3:15. DOI:10.48130/FR-2023-0015.
[4]
陈雄庭, 王泽云, 吴胡蝶, 等. 橡胶树新种植材料:自根幼态无性系[J]. 热带作物学报, 2002, 23(1):19-23.
CHEN X T, WANG Z Y, WU H D, et al. A new planting material of Hevea brasiliensis self-rooting juvenile-type clone[J]. Chinese Journal of Tropical Crops, 2002, 23(1):19-23. DOI:10.3969/j.issn.1000-2561.2002.01.004.
[5]
CARRON M P, LARDET L, LECONTE A, et al. Field trials network emphasizes the improvement of growth and yield through micropropagation in rubber tree (Hevea brasiliensis,Muell.Arg.)[J]. Acta Horticulturae, 2009(812):485-492. DOI:10.17660/actahortic.2009.812.70.
[6]
MIGNON E, WERBROUCK S. Somatic embryogenesis as key technology for shaping the rubber tree of the future[J]. Frontiers in Plant Science, 2018, 9:1804. DOI:10.3389/fpls.2018.01804.
[7]
王泽云, 曾宪松, 陈传琴, 等. 用离体花药诱导巴西橡胶植株的研究[J]. 热带作物学报, 1980, 1(1):16-26,107.
WANG Z Y, ZENG X S, CHEN C Q, et al. Induction of rubber plantlets from anther of Hevea brasiliensis Muell.Arg.in vitro[J]. Chinese Journal of Tropical Crops, 1980, 1(1):16-26,107.
[8]
RAHMAN M M, MAHMOOD M, ABDULLAH N, et al. Somatic embryogenesis and subsequent plant regeneration from zygotic embryo derived callus of rubber (Hevea brasiliensis Muell.Arg.)[J]. Plant Tissue Culture and Biotechnology, 2017, 27(1):51-61. DOI:10.3329/ptcb.v27i1.35012.
[9]
KALA R G, KURUVILA L, JAYASREE P K, et al. Secondary embryogenesis and plant regeneration from leaf derived somatic embryos of Hevea brasiliensis[J]. Journal of Plantation Crops, 2008, 36(3): 218-222.
[10]
MONTORO P, CARRON M P, GRANET F, et al. Development of new varietal types based on rejuvenation by somatic embryogenesis and propagation by conventional budding or microcutting in Hevea brasiliensis[J]. Acta Horticulturae, 2012(961):553-576. DOI:10.17660/actahortic.2012.961.73.
[11]
HUA Y W, HUANG T D, HUANG H S. Micropropagation of self-rooting juvenile clones by secondary somatic embryogenesis in Hevea brasiliensis[J]. Plant Breeding, 2010, 129(2):202-207. DOI:10.1111/j.1439-0523.2009.01663.x.
[12]
顾晓川, 戴雪梅, 黄天带, 等. 一种橡胶树次生体胚高效发生方法及其应用.CN115500261B[P]. 中国国家知识产权局,2022-12-23.
GU X C, DAI X M, HUANG T D, et al. Efficient rubber tree secondary body embryo generation method and application thereof.CN115500261B[P]. China National Intellectual Property Administration,2022-12-23.
[13]
UDAYABHANU J, HUANG T D, XIN S C, et al. Optimization of the transformation protocol for increased efficiency of genetic transformation in Hevea brasiliensis[J]. Plants, 2022, 11(8):1067. DOI:10.3390/plants11081067.
[14]
FAN Y T, XIN S C, DAI X M, et al. Efficient genome editing of rubber tree (Hevea brasiliensis) protoplasts using CRISPR/Cas 9 ribonucleoproteins[J].Industrial Crops and Products, 2020, 146:112146. DOI:10.1016/j.indcrop.2020.112146.
[15]
DAI X M, YANG X F, WANG C, et al. CRISPR/Cas9-mediated genome editing in Hevea brasiliensis[J]. Industrial Crops and Products, 2021, 164:113418. DOI:10.1016/j.indcrop.2021.113418.
[16]
YANG X F, LIN Q F, UDAYABHANU J, et al. An optimized CRISPRCas9-based gene editing system for efficiently generating homozygous edited plants in rubber tree (Hevea brasiliensis)[J]. Industrial Crops and Products, 2024, 222:119740. DOI:10.1016/j.indcrop.2024.119740.
[17]
ESCALONA M, LORENZO J C, GONZÁLEZ B, et al. Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems[J]. Plant Cell Reports, 1999, 18(9):743-748. DOI:10.1007/s002990050653.
[18]
PIAO X C, CHAKRABARTY D, HAHN E J, et al. A simple method for mass production of potato microtubers using a bioreactor system[J]. Current Science, 84(8):1129-1132.
[19]
ROELS S, NOCEDA C, ESCALONA M, et al. The effect of headspace renewal in a Temporary Immersion Bioreactor on plantain (Musa AAB) shoot proliferation and quality[J]. Plant Cell,Tissue and Organ Culture, 2006, 84(2):155-163. DOI:10.1007/s11240-005-9013-y.
[20]
SAMBOLÍN PÉREZ C A, AYBAR BATISTA R, MORALES MARRERO S, et al. Biochemical and molecular characterization of Musa sp. cultured in temporary immersion bioreactor[J]. Plants, 2023, 12(21):3770. DOI:10.3390/plants12213770.
[21]
BELLO-BELLO J J, SCHETTINO-SALOMÓN S, ORTEGA-ESPINOZA J, et al. A temporary immersion system for mass micropropagation of pitahaya (Hylocereus undatus)[J]. 3 Biotech, 2021, 11(10):437. DOI:10.1007/s13205-021-02984-5.
[22]
SPINOSO-CASTILLO J L, SERRANO-FUENTES M K, SORCIA-MORALES M, et al. Temporary immersion bioreactors for sugarcane multiplication and rooting[J]. Methods in Molecular Biology, 2024, 2759:53-61. DOI:10.1007/978-1-0716-3654-1_5.
[23]
TROCH V, SAPETA H, WERBROUCK S, et al. In vitro culture of chestnut (Castanea sativa Mill.) using temporary immersion bioreactors[J]. Acta Horticulturae, 2010(885):383-389. DOI:10.17660/actahortic.2010.885.54.
[24]
CAVALLARO V, SCALISI C, SAITA A, et al. Improving in vitro mass proliferation of carob (Ceratonia siliquaL.) from seedling apices by temporary immersion systems[J]. Acta Horticulturae, 2017(1155):221-226. DOI:10.17660/actahortic.2017.1155.31.
[25]
MÉNDEZ-HERNÁNDEZ H A, LOYOLA-VARGAS V M. Plant micropropagation and temporary immersion systems[J]. Methods in Molecular Biology, 2024, 2827:35-50. DOI:10.1007/978-1-0716-3954-2_3.
[26]
MORDOCCO A M, BRUMBLEY J A, LAKSHMANAN P. Development of a temporary immersion system (RITA©) for mass production of sugarcane (Saccharum spp.interspecific hybrids)[J]. In Vitro Cellular & Developmental Biology-Plant, 2009, 45(4):450-457. DOI:10.1007/s11627-008-9173-7.
[27]
MCALISTER B, FINNIE J, WATT M P, et al. Use of the temporary immersion bioreactor system (RITA©) for production of commercial Eucalyptus clones in Mondi Forests (SA)[J]. Plant Cell,Tissue and Organ Culture, 2005, 81(3):347-358. DOI:10.1007/s11240-004-6658-x.
[28]
MALLÓN R, COVELO P, VIEITEZ A M. Improving secondary embryogenesis in Quercus robur:application of temporary immersion for mass propagation[J]. Trees, 2012, 26(3):731-741. DOI:10.1007/s00468-011-0639-6.
[29]
DEBNATH S. Bioreactors and molecular analysis in berry crop micropropagation-a review[J]. Canadian Journal of Plant Science, 2011, 91(1):147-157. DOI:10.4141/cjps10131.
[30]
ETIENNE H, LARTAUD M, MICHAUX-FERRIÉRE N, et al. Improvement of somatic embryogenesis in Hevea brasiliensis (Müll.Arg.) using the temporary immersion technique[J]. In Vitro Cellular & Developmental Biology-Plant, 1997, 33(2):81-87. DOI:10.1007/s11627-997-0001-2.
[31]
李淑雅, 陈健妙, 张骐飞, 等. 三种培养方式对橡胶树花药胚性悬浮细胞团再生体系构建的影响[J]. 植物生理学报, 2022, 58(7):1236-1244.
LI S Y, CHEN J M, ZHANG Q F, et al. Efects of three culture methods on the establishment of anther embryogenic suspension cell masses regeneration system of Hevea brasiliensis[J]. Plant Physiology Journal, 2022, 58(7):1236-1244. DOI:10.13592/j.cnki.ppj.100160.
[32]
董礼昊, 陈健妙, 王凯旋, 等. 利用间歇浸没式生物反应器进行橡胶组培快繁研究[J]. 热带生物学报, 2024, 15(6):737-744.
DONG L H, CHEN J M, WANG K X, et al. Rapid propagation of rubber tree by using intermittent immersion Bioreactor[J]. Journal of Tropical Biology, 2024, 15(6):737-744. DOI:10.15886/j.cnki.rdswxb.20240068.
[33]
ETIENNE H, BRETON D, BREITLER J C, et al. Coffee somatic embryogenesis:how did research,experience gained and innovations promote the commercial propagation of elite clones from the two cultivated species?[J]. Frontiers in Plant Science, 2018, 9:1630. DOI:10.3389/fpls.2018.01630.
[34]
GATICA-ARIAS A M, ARRIETA-ESPINOZA G, ESPINOZA ESQUIVEL A M. Plant regeneration via indirect somatic embryogenesis and optimisation of genetic transformation in Coffea arabica L.cvs.Caturra and Catuaí[J]. Electronic Journal of Biotechnology, 2008, 11(1). DOI:10.2225/vol11-issue1-fulltext-9.
[35]
ETIENNE-BARRY D, BERTRAND B, VASQUEZ N, et al. Direct sowing of Coffea Arabica somatic embryos mass-produced in a bioreactor and regeneration of plants[J]. Plant Cell Reports, 1999, 19(2):111-117. DOI:10.1007/s002990050720.
[36]
TEISSON C, ALVARD D. A new concept of plant in vitro cultivation liquid medium:temporary immersion[M]//Current Issues in Plant Molecular and Cellular Biology. Dordrecht: Springer Netherlands, 1995:105-110. DOI:10.1007/978-94-011-0307-7_12.
[37]
NIEMENAK N, SAARE-SURMINSKI K, ROHSIUS C, et al. Regeneration of somatic embryos in Theobroma cacao L.in temporary immersion bioreactor and analyses of free amino acids in different tissues[J]. Plant Cell Reports, 2008, 27(4):667-676. DOI:10.1007/s00299-007-0497-2.
[38]
刘丽敏, 吴凯朝, 余坤兴, 等. TIBs和传统培养方式培养的甘蔗脱毒苗生理生化指标比较[J]. 西南农业学报, 2013, 26(4):1444-1447.
LIU L M, WU K C, YU K X, et al. Comparison of several physiological and biochemical parameters in virus-free sugarcane seedlings produced by TIBs and traditional tissue culture methods[J]. Southwest China Journal of Agricultural Sciences, 2013, 26(4):1444-1447. DOI:10.16213/j.cnki.scjas.2013.04.050.
[39]
韦绍龙, 杨柳, 韦莉萍, 等. 不同组培方法对香蕉组培苗假植阶段生理特征的影响[J]. 西南农业学报, 2016, 29(6):1285-1290.
WEI S L, YANG L, WEI L P, et al. Effect of different tissue culture methods on physiological characteristics of banana plantlets at transplanting stage[J]. Southwest China Journal of Agricultural Sciences, 2016, 29(6):1285-1290. DOI:10.16213/j.cnki.scjas.2016.06.009.
[40]
张慧君, 华玉伟, 黄天带, 等. 橡胶树体胚发生过程中的生理生化特性[J]. 热带农业科学, 2014, 34(10):12-14,18.
ZHANG H J, HUA Y W, HUANG T D, et al. Physiologic and biochemical characteristics in the development of embryogenesis of rubber tree[J]. Chinese Journal of Tropical Agriculture, 2014, 34(10):12-14,18. DOI:10.3969/j.issn.1009-2196.2014.10.003.
[41]
GUO H H, ZHANG L, GUO H X, et al. Single-cell transcriptome atlas reveals somatic cell embryogenic differentiation features during regeneration[J]. Plant Physiology, 2024, 195(2):1414-1431. DOI:10.1093/plphys/kiae107.
[42]
CHEN X M, WANG Z W, LIANG X G, et al. Incomplete filling in the basal region of maize endosperm:timing of development of starch synthesis and cell vitality[J]. The Plant Journal, 2024, 120(3):1142-1158. DOI:10.1111/tpj.17043.
[43]
YING Y N, DENG B W, ZHANG L, et al. Multi-omics analyses reveal mechanism for high resistant starch formation in an indica rice SSIIIa mutant[J]. Carbohydrate Polymers, 2025, 347:122708. DOI:10.1016/j.carbpol.2024.122708.

基金

海南省重点研发计划国际科技合作研发项目(GHYF2022013)
海南省国际科技合作人才与交流项目(G20241024008E)
海南省自然科学基金项目(324MS085)
现代农业产业技术体系专项(CARS-33-YZ4)

责任编辑: 吴祝华
PDF(5796 KB)

Accesses

Citation

Detail

段落导航
相关文章

/