正向除渣器内部纤维浆料流场的数值模拟

张健,陈永利,王晨,张辉

南京林业大学学报(自然科学版) ›› 2013, Vol. 37 ›› Issue (02) : 141-146.

PDF(1384335 KB)
PDF(1384335 KB)
南京林业大学学报(自然科学版) ›› 2013, Vol. 37 ›› Issue (02) : 141-146. DOI: 10.3969/j.issn.1000-2006.2013.02.025
研究论文

正向除渣器内部纤维浆料流场的数值模拟

  • 张 健,陈永利,王 晨,张 辉*
作者信息 +

Numerical simulation of fiber slurry flow field in the internal forward cleaner

  • ZHANG Jian, CHEN Yongli, WANG Chen, ZHANG Hui*
Author information +
文章历史 +

摘要

基于FLUENT软件,采用雷诺应力模型(RSM)对正向除渣器中3%的纸浆悬浮液流场进行数值模拟,同时采用相间耦合的离散相模型计算浆渣颗粒的运动轨迹和分离效率。结果表明:正向除渣器内部流场具有小幅度的不对称性; 从除渣器壁面到中心轴处的总压最大压降在4 500 Pa左右。根据不同截面上轴向速度的分布特征可以发现,正向除渣器内部纤维浆料流场主要由中心区域的内旋流和外围的外旋流所组成; 粒径在0.02 mm时的重杂质和轻杂质的分离效率都维持在50%左右,粒径大于0.2 mm时的重杂质分离效率随着粒径的增大而提高,而轻杂质分离效率随粒径的增大而降低; 在粒径接近1 mm时,相对密度大于或等于石子的浆渣颗粒的分离效率已达到100%。

Abstract

Based on the FLUENT software, the 3% concentration of pulp suspension flow field was obtained with the Reynolds stress model(RSM). Meanwhile, the motion trail and separation efficiency of pulp impurities were obtained with the coupling of the alternate with discrete phase model. The results of simulation show that there is slightly asymmetric in the internal flow field of forward cleaner. The largest pressure drop of total pressure is about 4 500 Pa from the wall to the central axis of forward cleaner. The axial velocity profile at any section of forward cleaner is composed of two regions, including an internal vortex in the central region and an external vortex in the outer region. The separation efficiency for heavy and light impurities with the particles diameter of 0.02 mm are all maintained at about 50%, when the particles diameter is more than 0.2 mm, separation efficiency of heavy impurities will increase along with the particle diameter increasing, which of light impurities will decrease along with particle diameter increase. When the particles diameter is close to 1mm, the separation efficiency of the particles which the relative densities are greater than or equal to the stones has reached 100%.

引用本文

导出引用
张健,陈永利,王晨,张辉. 正向除渣器内部纤维浆料流场的数值模拟[J]. 南京林业大学学报(自然科学版). 2013, 37(02): 141-146 https://doi.org/10.3969/j.issn.1000-2006.2013.02.025
ZHANG Jian, CHEN Yongli, WANG Chen, ZHANG Hui. Numerical simulation of fiber slurry flow field in the internal forward cleaner[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2013, 37(02): 141-146 https://doi.org/10.3969/j.issn.1000-2006.2013.02.025
中图分类号: TS733+.4    TQ019    TQ028.5   

参考文献

[1] 刘向红,严晓云.锥形除渣器的设计[J].轻工机械,2008,26(3):20-23. Liu X H, Yan X Y. Design and discussion of cone-shaped cleaners[J]. Light Industry Machinery, 2008, 26(3):20-23.
[2] Minkov L, Dueck J. CFD-modeling of a flow in a hydrocyclone with an additional water injector [J]. Computer Research and Modeling, 2011,3(1):63-76.
[3] Dabir D. Mean velocity measurements in a 3 inch hydrocyclone using laser doppler anemometry [D]. Michigan:Michigan State University, 1983.
[4] Statie E, Salcudean M, Gartshore I, et al. A computational study of particle separation in hydrocyclones [J]. Pulp and Paper Science, 2002, 28(3):84-92.
[5] Bernardo S, Mori M.3-D Computational fluid dynamics for gas-particle in a cyclone with different inlet section angles[J]. Power Technology, 2006, 162:190-200.
[6] Slattery J C. Advanced Transport Phenomena [M]. Cambridge:Cambridge University Press, 1999.
[7] 赵新学,金有海.基于CFD的旋风分离器壁面磨损数值预测[J].石油机械,2010,38(12):42-45. Zhao X X, Jin Y H. Numerical prediction of the wall abrasion of cyclone separator base on CFD technique[J]. China Petroleum Machinery, 2010, 38(12): 42-45.
[8] Wang B, Xu D L, Xiao G X, et al. Numerical study of gas-solid flow in a cyclone separator [C]// Melbourne. Third International Conference on CFD in the Minerals and Process Industries, CSIRO, 2003.
[9] Sommerfeld M, Ho C H. Numerical calculation of particle transport in turbulent wall bounded flows [J]. Powder Technology, 2003, 131:1-6.
[10] Zhang J, You X Y, Niu Z G. Numerical simulation of solid-liquid flow in hydrocyclone[J]. Chem Biochem Eng Q, 2011, 25(1):37-41.
[11] Medronho R A, Schuetze J, Deckwer W D. Numerical simulation of hydrocyclones for cell separation[J]. Latin American Applied Research, 2005, 35:1-8.
[12] 高玉杰.废纸再生实用技术[M].北京:化学工业出版社,2003.
[13] 杨福成.现代除渣器的理论与实践(续一)[J].黑龙江造纸,2003,31(2): 24-25. Yang F C. Theory and practice of modern cleaner[J]. Heilongjiang Pulp and Paper, 2003, 31(2): 24-25.
[14] 杨福成.现代除渣器的理论与实践(续二)[J].黑龙江造纸,2004,32(1): 17-18. Yang F C. Theory and practice of modern cleaner[J]. Heilongjiang Pulp and Paper, 2004, 32(1): 17-18.
[15] Jordan Ko, Said Zahrai, Olivier Macchion. Numerical modeling of highly swirling flows in a through-flow cylindrical hydrocyclone[J]. American Institute of Chemical Engineers, 2006, 52:3334-3344.
[16] Dlamini M F, Powell M S, Meyer C J. A CFD simulation of a single phase hydrocyclone flow field [J]. The South African Institute of Mining and Metallurgy, 2005, 11:711-718.
[17] 王志斌,陈文梅,褚良银,等.旋流器流场的数值模拟及对流特性的分析[J].四川大学学报,2006,38(3):59-64. Wang Z B, Chen W M, Chu L Y, et al. Numerical simulation and new understanding the hydrocyclone flow field by computational fluid dynamics[J]. Journal of Sichuan University, 2006, 38(3):59-64.
[18] 陈克复.制浆造纸机械与设备[M].2版.北京:中国轻工业出版社,2007.

基金

收稿日期:2012-03-25 修回日期:2012-06-30
基金项目:南京林业大学江苏省制浆造纸科学与技术重点实验室开放基金(201001); 江苏高校优势学科建设工程资助项目(PAPD)
第一作者:张健,硕士。*通信作者:张辉,教授。E-mail: hgzh@njfu.edu.cn。
引文格式:张健,陈永利,王晨,等. 正向除渣器内部纤维浆料流场的数值模拟[J]. 南京林业大学学报:自然科学版,2013,37(2):141-146.

PDF(1384335 KB)

Accesses

Citation

Detail

段落导航
相关文章

/