南京林业大学学报(自然科学版) ›› 2013, Vol. 37 ›› Issue (02): 169-172.doi: 10.3969/j.issn.1000-2006.2013.02.031

• 研究简报 • 上一篇    下一篇

兴安落叶松天然林单木高生长模型

马利强1,玉 宝2,王立明3,张秋良4*   

  1. 1.中国林业科学研究院森林生态环境与保护研究所,北京 100091;
    2.国家林业局管理干部学院,北京 102600; 3.中国人民武装警察部队警种指挥学院,北京 102202;
    4.内蒙古农业大学林学院,内蒙古 呼和浩特 010019
  • 出版日期:2013-04-18 发布日期:2013-04-18
  • 基金资助:
    收稿日期:2012-08-11 修回日期:2012-11-16
    基金项目:国家自然科学基金项目(31070566); “十二五”国家科技支撑计划(2012BAD22B0204)
    第一作者:马利强,副教授,博士。*通信作者:张秋良,教授,博士。E-mail: zqlemail@vip.sina.com。
    引文格式:马利强,玉宝,王立明,等. 兴安落叶松天然林单木高生长模型[J]. 南京林业大学学报:自然科学版,2013,37(2):169-172.

Single tree height growth models of Larix gmelinii natural forest

MA Liqiang1,YU Bao2,WANG Liming3,ZHANG Qiuliang4*   

  1. 1.The Research Institute of Forest Ecology, Environment and Protection, The Chinese Academy of Forestry, Beijing 100091, China;
    2.State Academy of Forestry Administration, Beijing 102600, China;
    3.Command College of Armed Police Forces Kinds of China, Beijing 102202, China;
    4.College of Forestry, Inner Mongolia Agricultural University, Huhhot 010019, China
  • Online:2013-04-18 Published:2013-04-18

摘要: 根据31株解析木数据,利用Logistic方程和4参数的Richards方程拟合了兴安落叶松天然林优势木、平均木和被压木高生长模型,经检验,模型均在0.01水平上显著。对林木年龄(A)、胸径(D)、树高(H)、活枝下高(h1)、死枝下高(h2)进行相关性分析后,发现DHh1h2等在0.01水平上有显著正相关,所拟合的活枝下高和死枝下高的模型在0.01水平上显著。研究表明:Logistic方程较4参数的Richards方程对兴安落叶松高生长的拟合效果好,它们对优势木、平均木和被压木高生长拟合所得模型的R2分别为0.829、0.758、0.807和0.771、0.668、0.824。以Logistic方程对优势木和被压木的拟合效果较对平均木的好。对优势木高生长模型精度检验发现,实测值与理论值无显著差异(p>0.05)。

Abstract: According to the 31 analyzed trees, Logistic and four-parameter Richards equations were used to fit the height growth models of the dominating stems, the average stems and the overtopped stems of natural Larix gmelinii forests. All models were highly significant at 0.01 level. Correlations among the age(A), the DBH(D), the tree height(H), the live height under branches(h1), the dead height under branches(h2)were analyzed and verified that there was a significantly positive correlation among D, H, h1 and h2 at 0.01 level. Live height under branches and dead height under branches significantly fit the model at 0.01 level. Results indicated that Logistic equation was better than the four-parameter Richards equation when fitting the growth, logistic equation was evidenced by their corresponding model determinant coefficients R2 of 0.829, 0.758, 0.807 for the dominating stem, the average stem and the overtopped stem respectively. In contrast, 0.771, 0.668, 0.824 were respectively derived by the four-parameter Richards equation. Obviously, two models were jointly well-performed when fitting the growth of the dominant trees and the overtopped trees compared to the average trees. After test, the measured values and the modeled values in terms of the growth of the dominant trees had statistically no significant difference(p>0.05), which indicated that the established models could be practical.

中图分类号: