南京林业大学学报(自然科学版) ›› 2013, Vol. 37 ›› Issue (04): 149-155.doi: 10.3969/j.issn.1000-2006.2013.04.028
叶建仁,任嘉红,李 浩,吴小芹
出版日期:
2013-08-18
发布日期:
2013-08-18
基金资助:
YE Jianren, REN Jiahong, LI Hao, WU Xiaoqin
Online:
2013-08-18
Published:
2013-08-18
摘要: 洋葱伯克霍尔德氏菌是一个具有17个相近种的复合群体,称为洋葱伯克霍尔德氏菌群(Burkholderia cepacia complex,简称BCC),其中一些种具有生物防治、促进植物生长、生物修复等功能,同时又有一些种是人类的条件致病菌。笔者就BCC的生物学特性、基因型和基因组、生防机制、安全性评估、在林业中的应用现状等进行综述,同时对其在我国林业中应用前景进行了分析,认为正确区分有毒株和无毒株是BCC在林业中应用的关键和前提,最后提出了在林业中应用BCC菌株要注意的8个方面。
中图分类号:
叶建仁,任嘉红,李浩,等. 洋葱伯克霍尔德氏菌及其在林木病害防治中的应用[J]. 南京林业大学学报(自然科学版), 2013, 37(04): 149-155.
YE Jianren, REN Jiahong, LI Hao, WU Xiaoqin. Application and its prospect analysis for Burkholderia cepacia in forest disease control[J].Journal of Nanjing Forestry University (Natural Science Edition), 2013, 37(04): 149-155.DOI: 10.3969/j.issn.1000-2006.2013.04.028.
[1] Payne G W, Vandamme P, Morgan S H, et al. Development of a recA gene-based identification approach for the entire Burkholderia genus [J]. Applied and Environmental Microbiology, 2005, 71(7):3917-3927. [2] Vanlaere E, Baldwin A, Gevers D, et al. Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species, Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov. [J]. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(1), 102-111. [3] Agnoli K, Schwager S, Uehlinger S, et al. Exposing the third chromosome of Burkholderia cepacia complex strains as a virulence plasmid [J]. Molecular Microbiology, 2012, 83(2):362-378. [4] Isles A, Maclusky I, Corey M, et al. Pseudomonas cepacia infection in cystic fibrosis:an emerging problem [J]. Journal of Pediatrics, 1983, 104(2):206-210. [5] Govan J R W, Hughes J E, Vandamme P. Burkholderia cepacia:medical,taxonomic and ecological issues[J]. Journal of Medical Microbiology [J]. 1996, 45(6):395-407 [6] Holmes A, Govan J, Goldstein R. Agricultural use of Burkholderia(Pseudomonas)cepacia:A threat to human health [J]. Emerging infectious diseases, 1998, 4(2):221-227. [7] 年华, 褚云卓, 赵敏, 等. 洋葱伯克霍尔德菌监测结果分析[J]. 临床检验杂志, 2000, 18(4):238-239. Nian H, Chu Y Z, Zhao M, et al. Analysis and monitoring results of Burkholderia cepacia [J]. Chinese Journal of Clinical Laboratory Science, 2000, 18(4):238-239. [8] Agodi A, Mahenthiralingam E, Barchitta M, et al. Burkholderia cepacia complex infection in Italian patients with cystic fibrosis:prevalence, epidemiology, and genomovar status [J]. Journal of Clinical Microbiology, 2001, 39(8):2891-2896 [9] Juhasz A L, Britz M L, Stanley G A. Degradation of fluoranthene, pyrene, benz[a]anthracene and dibenz[a,h] anthracene by Burkholderia cepacia [J]. Journal of Applied Microbiology, 1997,83(2):189-198. [10] Coenye T, Vandamme P. Diversity and significance of Burkholderia species occupying diverse ecological niches [J]. Environmental Microbiology, 2003, 5(9):719-729. [11] Chiarini L, Bevivino A, Dalmastri C, et al. Burkholderia cepacia complex species:health hazards and biotechnological potential [J]. Trends in Microbiology, 2006, 14(6):277-286. [12] 罗远婵, 谢关林. 洋葱伯克氏细菌是我们的敌人还是朋友[J]. 微生物学报, 2005, 45(4):647-652. Luo Y C, Xie G L. Burkholderia cepacia:our enemy or friend[J]. Acta Microbiologica Sinica, 2005, 45(4):647-652. [13] 张军民, 罗燕萍, 赵莉萍, 等. 临床分离洋葱伯克霍尔德菌鉴定方法的探讨 [J]. 中华检验医学杂志, 2002, 25(6):333-335. Zhang J M, Luo Y P, Zhao L P, et al. A identification method for clinial Burkholderia cepacia isolates[J]. Chinese Journal of Laboratory Medicine, 2002, 25(6):333-335. [14] Vandamme P, Dawyndt P. Classification and identification of the Burkholderia cepacia complex:past, present and future [J]. Systematic and Applied Microbiology. 2011, 34(2):87-95. [15] Coenye T, Mahenthiralingam E, Henry D, et al. Burkholderia ambifaria sp. nov, a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis related isolates [J]. International Journal of Systematic and Evolutionary Microbiology, 2001, 51(4):1481-1490. [16] Vandamme P, Holmes B, Vancanneyt M, et al. Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov[J]. International Journal of Systematic Bacteriology, 1997, 47(4):1188-1200. [17] LiPuma J J. Update on the Burkholderia cepacia complex [J]. Current Opinion in Pulmonary Medicine, 2005, 11(6):528-533. [18] Mahenthiralingam E, Urban T A, Goldberg J B. The multifarious, multireplicon Burkholderia cepacia complex [J]. Nature Reviews Microbiology, 2005, 3:144-156. [19] Drevinek P, Mahenthiralingam E. Burkholderia cenocepacia in cystic fibrosis:epidemiology and molecular mechanisms of virulence [J]. Clinical Microbiology and Infection, 2010,16(7):821-830. [20] Komatsu H, Imura Y, Ohori A, et al. Distribution and organization of auxotrophic genes on the multichromosomal genome of Burkholderia multivorans ATCC 17616 [J]. Journal of Bacteriology, 2003, 185(11):3333-3343. [21] Egan E S, Fogel M A, Waldor M K. Divided genomes:negotiating the cell cycle in prokaryotes with multiple chromosomes [J]. Molecular Microbiology, 2005, 56(5):1129-1138. [22] Holden M T, Seth-Smith H M, Crossman L C, et al. The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients [J]. Journal of Bacteriology, 2009, 191(1):261-277. [23] Meijer A H, Spaink H P. Host-pathogen interactions made transparent with the zebrafish model [J]. Currrnt Drug Targets, 2011, 12(7):1000-1017. [24] Weilharter A, Mitter B, Shin M V, et al. Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytofirmans strain PsJN [J]. Journal of Bacteriology, 2011, 193(13):3383-3384. [25] Guo W, Wang Y, Song C, et al. Complete genome of Pseudomonas mendocina NK-01, which synthesizes medium-chain-length polyhyd-roxyalkanoates and alginate oligosaccharide [J]. Journal of Bacteriology, 2011, 193(13):3413-3414. [26] Banna N E,Winkelmann G. Pyrrolnitrin from Burkholderia cepacia:antibiotic activity against fungi and novel activities against streptomycetes [J]. Journal of Applied Microbiology, 1998, 85(1):69-78. [27] Alison H, Govan J, Richard G. Could the agricultural use of Burkholderia cepacia pose a threat to human health [J] Emerging Infectious Diseases, 1998, 4(2):221-227. [28] Upadhyay R, Visintin L, Jayaswal R. Environmental factor affecting antagonisms of Pseudomonas cepacia against Trichoderma viride [J]. Canadian Journal of Microbiology, 1991, 37(11):880-884. [29] Meyers E, Bisacchi G S, Dean L, et al. Xylocandin:a new complex of antifungal peptide. I: Taxonomy, isolation and biological activity [J]. The Journal of Antibiotics, 1987, 40(11):1515-1519. [30] Quan C S, Zheng W, Liu Q, et al. Isolation and characterization of a novel Burkholderia cepacia with strong antifungal activity against Rhizoctonia solani [J]. Biocontrol, 2006, 72(6):1276-284. [31] Arima K,Imanaka I,Kousaka M,et al. Pyrrolnitrin a new antibiotic substance, produced by Pseudomonas[J]. Agricultural and Biological Chemistry, 1964, 28:575-576. [32] Hill D S,Stein J I,Torkewitz N R,et al. Cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomonas flureseens and role of pyrrolnitrin synthesis in biological control of plant disease [J]. Applied and Environmental Microbiology, 1994, 60(1):78-85. [33] Janisiewicz W, Roitman J. Biological control of blue mold and grey mold on apple and pear with Pseudomonas cepecia [J]. Phytopathology, 1988, 78(12):1697-1700. [34] Hwang J, Chilton W S, Benson D M. Pyrrolnitrin production by Burkholderia cepacia and biocontrol of Rhizoctonia stem rot of poinsettia [J]. Biological control, 2002, 25(1):56-63. [35] Garbeva P, Voesenek K, Elsas J D. Quantitative detection and diversity of the pyrrolnitrin biosynthetic locus in soil under different treatments[J]. Soil Biology and Biochemistry, 2004, 36(9):1453-1463. [36] Hammer P E, Hill D S, Lam S T, et al. Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin[J]. Applied and Environmental Microbiology, 1997, 63(6):2147-2154. [37] Kirner S, Hammer P E, Hill D S, et al. Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens[J]. Journal of Bacteriology, 1998, 180(7):1939-1943. [38] Pierson III L S, Thomashow. Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens 30-84[J]. Molecular Plant-Microbe Interactions, 1992, 5(4):330-39. [39] 任嘉红, 吴小芹, 刘辉, 等. 吡咯伯克霍尔德氏菌JK-SH007抗菌蛋白的分离纯化 [J]. 微生物学通报, 2010, 37(6):872-880. Ren J H, Wu X Q, Liu H, et al. Isolation and purification of antifungal protein from Burkholderia pyrrocinia JK-SH007[J]. Microbiology China, 2010, 37(6):872-880. [40] Ren J H,Ye J R, Liu H, et al. Isolation and characterization of a new Burkholderia pyrrocinia strain JK-SH007 as a potential biocontrol agent [J]. World Journal of Microbiology and Biotechnology, 2011, 27(9):2203-2215. [41] Bevivino A, Peggion V, Chiarini L, et al. Effect of Fusarium verticillioides on maize-root-associated Burkholderia cenocepacia populations [J]. Research in Microbiology, 2005, 156(10):974-983. [42] Clode F E, Kaufmann M E, Malnick H, et al. Distribution of genes encoding putative transmissibility factors among epidemic and nonepidemic strains of Burkholderia cepacia from cystic fibrosis patients in the United Kingdom [J]. Journal of Clinical Microbiology, 2000, 38(5):1763-1766. [43] Mahenthiralingam E, Bischof J, Byrne S K, et al. DNA-based diagnostic approaches for the identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholdria multivorans, Burkholderia stabilis, and Burkholderia cepacia genomovarsⅠand Ⅲ [J]. Journal of Clinical Microbiology, 2000, 38(9):3165-3173. [44] Parke J L, Gurian-Scherman D. Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains [J]. Annual Review of Phytopathology, 2001,39(1):225-258. [45] Laura S S, Suh S J, Sokol P A, et al. A simple alaflfa seedling infection model for Pseudomonas aeruginosa strains associated with cystie fibrosis shows AlgT(singta-22)and RhlR contribute to pathogenesis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(24):15699-15704. [46] Rahme L G, Stevens E J, Wolfort S F, et al. Common virulence factors for bacterial pathogenicity in plants and animals [J]. Science, 1995, 268(30):1899-1902. [47] Bernier S P, Silo-Suh L, Woods D E, et al. Comparative analysis of plant and animal models for characterization of Burkholderia cepacia virulence [J]. Infection and Immunity, 2003, 71(9):5306-5313. [48] 张立新, 宋江华, 谢关林. 洋葱伯克氏菌基因型的鉴定及其在苜蓿模型上的毒力分析 [J]. 微生物学报, 2008, 48(11):1145-1450. Zhang L X, Song J G, Xie G L. Identification of the Burkholderia cepacia complex genomovars and their virulence in an alfalfa infection model[J]. Acta Microbiologica Sinica, 2008, 48(11):1145-1450. [49] Vergunst A C, Meijer A H, Renshaw S A, et al. Burkholderia cenocepacia creates an intramacrophage replication niche in zebrafish embryos, followed by bacterial dissemination and establishment of systemic infection [J]. Infection and Immunity, 2010, 78(4):1495-1508. [50] Hebber K P, Martel M H, Teulin T. Suppression of pre-and postemergence damping-off in corn by Burkholderia cepacia [J]. European Journal of Plant Pathology, 1998, 104(1):29-36. [51] Szczech M, Shoda M. Biocontrol of Rhizoctonia damping-off of tomato by Bacillus subtilis combined with Burkholderia cepacia[J]. Journal of Phytopathology-phytopathologische Zeitschrift, 2004, 152(10):549-556. [52] Singh R K, Mishra R P N, Jaiswal H K, et al. Isolation and identification of natural endophytic rhizobia from rice(Oryza sativa L.)through rDNA PCR-RFLP and sequence analysis [J]. Current Microbiology, 2006, 52(5):345-349. [53] 李纪顺,杨合同,陈凯,等. 伯克霍尔德氏菌B418的生物学特性[C]//中国植物病理学会2005年学术年会论文集. 保定,2005. Li J S, Yang H T, Chen K, et al. Biological characteristics of Burkholderia sp. B418[C]//Proceedings of the 2005 Annual Conference of the Chinese Society of Plant Pathology. Baoding, China. 2005. [54] 谢关林, 金扬秀, 徐传雨, 等. 我国水稻纹枯病拮抗细菌种类研究 [J]. 中国生物防治,2003, 19(4):166-170. Xie G L, Jin Y X, Xu C Y, et al. Bacterial antagonists of rice sheath blight disease in China[J]. Chinese Journal of Biological Control, 2003, 19(4):166-170. [55] 于晓庆, 郗丽君, 刘永光,等. 洋葱伯克霍尔德氏菌株Lyc2的鉴定及对棉苗的防病促生作用 [J]. 植物病理学报,2007, 37(4):426-432. Yu X Q, Xi L J, Liu Y G, et al.Physio-biochemical characterization and molecular identification of Burkholderia cepacia isolate Lyc2 as a PGPR to cotton seedlings[J]. Acta Phytopathologica Sinica, 2007, 37(4):426-432. [56] 谭小艳, 黄思良, 任建国, 等. 柑桔溃疡病内生拮抗细菌Bc51的研究 [J]. 植物病理学报, 2007, 7(1):9-17. Tan X Y, Huang S L, Ren J G, et al. Characterization of an endophytic bacterium strain Bc51 suppressing citrus canker[J]. Acta Phytopathologica Sinica, 2007, 7(1):9-17. [57] 牟志美, 路国兵, 冀宪领,等. 桑树内生拮抗细菌Burkholderia cepacia Lu10-1的分离鉴定及其内生定殖 [J]. 微生物学报, 2008, 48(5):623-630. Mou Z M, Lu G B, Ji X L, et al. Identification and colonization of an antagonistic endophytic Burkholderia cepacia Lu10-1 isolated from mulberry[J]. Acta Microbiologica Sinica, 2008,48(5):623-630. [58] 王勋建, 蔡三山, 霍宪起, 等. 松苗根际生防菌的研究 [J]. 南京林业大学学报:自然科学版,2009, 33(6):151-154. Wang X J, Cai S S, Huo X Q, et al. Study on biocontrol bacteria strain of pine seedling rhizosphere[J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2009, 33(6):151-154. |
[1] | 彭萌萌, 吴红渠, 张佳雯, 闫丽琼, 曹传旺, 孙丽丽. 基于RNAi技术解析美国白蛾HcAnk1和HcAnk2基因功能及对HcNPV的敏感性[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 181-190. |
[2] | 方静, 张书曼, 严善春, 武帅, 赵佳齐, 孟昭军. 两种丛枝菌根真菌复合接种对青山杨叶片抗美国白蛾的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 144-154. |
[3] | 祝艳艳, 贾瑞瑞, 付钰, 常林, 岳远征, 杨秀莲, 王良桂. 不同楸树品种对茎腐病的抗性差异研究[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 155-165. |
[4] | 张馨方, 王广鹏, 张树航, 李颖, 郭燕. 不同抗螨性板栗差异次生代谢物筛选与分析[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 234-240. |
[5] | 赵亚楠, 孙天骅, 王利峰, 许强, 刘军侠, 高宝嘉, 周国娜. 油松抗性相关激素与代谢物对油松毛虫取食与剪叶刺激的响应[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 219-226. |
[6] | 张丞慧, 祖国浩, 王海洋, 薛昊. 蝇克跳小蜂属1中国新记录种(膜翅目:跳小蜂科)[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 214-218. |
[7] | 孙凯丽, 贺春玲, 胡俊杰, 方全博, 栾科, 任迎丰, 肖治术. 岩田蜾蠃𧎥在黄喙蜾蠃腹部的寄生习性研究[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 243-250. |
[8] | 程方, 孙婷玉, 叶建仁. 抗松针褐斑病湿地松未成熟合子胚胚性愈伤组织的诱导[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 175-182. |
[9] | 于赐刚, 郭晓平, 马月, 张振华, 刘燕, 董姗姗, 孙硕. 浙江松阳县鸟类群落结构和多样性分析[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 231-236. |
[10] | 刘佳磊, 白润娥, 张锴, 文才艺, 闫凤鸣. 我国桂花树上常见粉虱种类记述[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 237-244. |
[11] | 杨乐, 黄晓君, 包玉海, 包刚, 佟斯琴, 苏都毕力格. 无人机航高对落叶松毛虫虫害遥感监测精度的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 13-22. |
[12] | 高家军, 张旭, 郭颖, 刘昱坤, 郭安琪, 石蒙蒙, 王鹏, 袁莹. 融合Swin Transformer的虫害图像实例分割优化方法研究[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 1-10. |
[13] | 杨堃, 范习健, 薄维昊, 刘婕, 王俊玲. 基于视觉加强注意力模型的植物病虫害检测[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 11-18. |
[14] | 王立超, 陈凤毛, 董晓燕, 田成连, 王洋. 松墨天牛取食和产卵特性研究[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 219-224. |
[15] | 石慧敏, 叶建仁, 王焱, 陆蓝翔, 史纪武. 响应面优化贝莱斯芽孢杆菌(Bacillus velezensis)菌株YH-18产芽孢培养基和培养条件[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 209-218. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||