南京林业大学学报(自然科学版) ›› 2013, Vol. 37 ›› Issue (06): 82-88.doi: 10.3969/j.issn.1000-2006.2013.06.017

• 研究论文 • 上一篇    下一篇

中国气候数据的长期模拟:动态自由尺度模型的构建和验证

代劲松,曹 林*,汪贵斌   

  1. 南京林业大学森林资源与环境学院,江苏 南京 210037
  • 出版日期:2013-12-18 发布日期:2013-12-18
  • 基金资助:
    收稿日期:2012-12-20 修回日期:2013-03-01
    基金项目:“十二五”国家科技支撑计划(2012BAD21B04)
    第一作者:代劲松,博士生。*通信作者:曹林,讲师,博士。E-mail: ginkgocao@gmail.com。
    引文格式:代劲松,曹林,汪贵斌. 中国气候数据的长期模拟:动态自由尺度模型的构建和验证[J]. 南京林业大学学报:自然科学版,2013,37(6):82-88.

Long-term simulation of China’s climate data-establishment and validation of the dynamic free-scale model

DAI Jinsong, CAO Lin*, WANG Guibin   

  1. College of Forest Resources and Environment, Nanjing Forestry University, Nanjing 210037, China
  • Online:2013-12-18 Published:2013-12-18

摘要: 自由尺度气候数据是预测未来森林生长、分布以及分析森林生态系统响应和适应气候变化的重要数据基础。笔者借助多源长期固定尺度气候数据,利用双线性距离加权插值和海拔调整方程构建了中国自由尺度气候数据模型,并通过全国范围内302个气象站的历史数据对基线气候数据进行了数据验证。结果表明:地理位置变量与月温度变量相关性很高,海拔调整方程拟合效果较好(R2都在0.91以上); 通过结合双线性距离加权插值和海拔调整之后的基线数据不仅提高了空间分辨率,且增加了数据精度。针对降雨变量空间位置不敏感的特性,单独使用双线性距离加权插值对降雨变量依然有效。基线数据和距平值叠加算法有效地保证了数据缺失区域的数据完整性,从而保证了精度; 但鉴于气候环境的随机性和波动性,以及微气候和植被的影响,较长时期平均估计值精度将更为可靠。

Abstract: The free-scale climate data plays an important role as basic data in projecting future forest growth and distribution, and analyzing the responses and adaptation of forest ecosystems on climate change. In this paper, by using multi-source long term static scale climate data, the free-scale climate data model in China was established in terms of a new downscaling algorithm by combining the bilinear distance-weighted interpolation and elevation adjustment; the baseline climate data was validated by historical climate data from 302 in the nationwide. The results indicated that the correlations between geographic variables and temperature variables were high, fitting effects of elevation adjustment functions were all significant(R2 greater than 0.91). Through downscaling, the baseline data not only improved the spatial resolution, but also the data accuracy. Since the relationships between precipitation variables and geographic variables were not strong enough to develop elevation adjustment functions, they were only adjusted by bilinear distance-weigthed interpolation, but the improvements still remained. The algorithm overlaied the historical and projected climate anomalies to free-scale baseline data ensured the data integrity in the missing values regions and maintained the accuracy. However, attentions should be paid to the fact that, given the randomness and volatility of the climate environment as well as the influnces of micro-climate and vegatation, the estimated accuracy of average value in a long term would be much more reliable.

中图分类号: