南京林业大学学报(自然科学版) ›› 2014, Vol. 38 ›› Issue (01): 9-14.doi: 10.3969/j.issn.1000-2006.2014.01.002
徐 阳,陈金慧,李 亚,洪 舟,王 颖,赵亚琦,王新民,施季森*
出版日期:
2014-01-15
发布日期:
2014-01-15
基金资助:
XU Yang, CHEN Jinhui, LI Ya, HONG Zhou, WANG Ying, ZHAO Yaqi, WANG Xinmin, SHI Jisen*
Online:
2014-01-15
Published:
2014-01-15
摘要: 利用已经公布的杉木444条EST序列和未公布的杉木基因组文库中1 142条基因序列,进行引物开发效率的比较。去冗余后,利用MISA 搜索SSR 位点,分别得到109个和39个含有SSR的 位点。杉木EST序列中SSR分布密度为964.58个/Mbp,基因组中平均每Mbp出现1 037.24个SSR。在两个独立来源的数据库序列中,六核苷酸重复均为最多的重复类型,且AT-rich的重复类型占较大比例。AGC/CTG是杉木EST序列和基因组库中最多的三碱基重复,通过Primer 3.0分别设计出SSR引物95对和37对。为考察设计引物在杉木不同种源(群体)中的有效性,取12个种源(个体)的优良个体, 利用随机抽取的10个EST-SSR和8个gSSR(基因组SSR)进行引物筛选,结果表明:EST-SSR和gSSR各有4对引物在12个种源(个体)中表现出明显的多态性,多态率分别为40%和50%。8对多态性的SSR引物共扩增出 25 个多态性等位位点,平均每个引物产生 3.125 个多态性等位位点,平均有效的等位位点为2.399 5,PIC平均值为0.519 1; Hot平均为0.307 4。其中gSSR标记在检测群体间存在较大的分化,4个gSSR比4个EST-SSR扩增出更多的等位位点数、平均等位位点数,以及更大的PIC值。
中图分类号:
徐阳,陈金慧,李亚,等. 杉木EST-SSR与基因组SSR引物开发[J]. 南京林业大学学报(自然科学版), 2014, 38(01): 9-14.
XU Yang, CHEN Jinhui, LI Ya, HONG Zhou, WANG Ying, ZHAO Yaqi, WANG Xinmin, SHI Jisen. Development of EST-SSR and genomic-SSR in Chinese fir[J].Journal of Nanjing Forestry University (Natural Science Edition), 2014, 38(01): 9-14.DOI: 10.3969/j.issn.1000-2006.2014.01.002.
[1] 叶志宏, 施季森, 翁玉榛, 等. 杉木地理种源变异模式[J]. 南京林业大学学报, 1990, 14(4):15-22.Ye Z H, Shi J S, Weng Y Z, et al. The geographical provenance variation pattern of Cunninghamia lanceolata[J]. Journal of Nanjing Forestry University, 1990, 14(4):15-22. [2] 施季森, 叶志宏, 翁玉榛, 等. 杉木生长与材性联合遗传改良研究[J].南京林业大学学报, 1993, 17(1):1-8.Shi J S, Ye Z H, WengY Z, et al. Research on the joint genetic improvement of growth and wood properties in Chinese fir(Cunninghamia lanceolata(Lamb.)Hook.)[J]. Journal of Nanjing Forestry University, 1993, 17(1):1-8. [3] 施季森. 福建省杉木遗传改良现状与发展技术对策[J]. 福建林业科技, 1994,21(3):28-31.Shi J S. The present situation of Chinese fir genetic improvement in Fujian province and the technical countermeasures of developing it[J]. Journal of Fujian Forestry Science and Technology, 1994,21(3):28-31. [4] 郑仁华, 施季森. 福建省杉木良种繁育现状与对策[J]. 林业科技开发, 2004, 18(2):3-7.Zheng R H, Shi J S. The present situation and the counter measures of Cunninghamia lanceolata breeding in Fujian province[J]. China Forestry Science and Technology, 2004,18(2):3-7. [5] 郑仁华, 施季森. 福建杉木良种繁育现状与展望[R].南宁:第三届南方林木育种研讨会, 2006. [6] 施季森. 林木生物技术育种未来10年若干科学问题展望[J]. 南京林业大学学报:自然科学版, 2012, 36(5):1-13.Shi J S. Prospection on some topics of forest genetic improvement through modern biotechnology for the next-ten-years in China[J]. Journal of Nanjing Forestry University:Natural Sciences Edition. 2012, 36(5):1-13. [7] Morgante M, Olivieri M. PCR-amplified microsatellites as markers in plant genetics[J]. Plant J, 1993, 3(1):175-182. [8] Varshney R K, Graner A, Sorrells M E. Genic microsatellite markers in plants:features and applications[J]. Trends in Biotechnology, 2005, 23(1):48-55. [9] Prakash C Sharma, Grover A, Gunter K. Mining microsatellites in eukaryotic genomes[J]. Trends in Biotechnology, 2007, 25(11):490-498. [10] Wang G F, Gao Y, Yang L, et al. Identification and analysis of differentially expressed genes in differentiating xylem of Chinese fir(Cunninghamia lanceolata)by suppression subtractive hybridization[J]. Genome, 2007, 50(12):1141-1155 [11] 李亚. 杉木CpG文库的构建及全基因组DNA甲基化检测[D]. 南京:南京林业大学, 2011. Li Y. The construction of CpG library and genome-wide DNA methylation detection in Chinese fir[D]. Nanjing:Nanjing Forestry University, 2011. [12] Doyle J. DNA protocols for plants CTAB total DNA isolation[C]//Hewitt G M, Johnston A. Molecular Techniques in Taxonomy. Berlin:Springer-Verlag, 1991. [13] Yeh F C, Boyle T. Population genetic analysis of co-dominant and dominant markers and quantitative traits[J]. Belgian Journal of Botany, 1997,129:57 [14] Kimura M, Crow J F. The number of alleles that can be maintained in a finite population[J]. Genetics, 1964, 49:725-738. [15] Yin T M, Zhang X Y, Gunter L E, et al. Microsatellite primer resource for Populus developed from the mapped sequence scaffolds of the Nisqually-1 genome[J]. New Phytologist, 2009,181:498-503 [16] Cavagnaro P F, Senalik D A, Yang L M, et al. Genome-wide characterization of simple sequence repeats in cucumber(Cucumis sativus L.)[J]. BMC Genomics, 2010, 11(1):569. [17] Echt C S, Saha S, Deemer D L, et al. Microsatellite DNA in genomic survey sequences and UniGenes of loblolly pine[J]. Tree Genetics & Genomes, 2011, 7(4):773-780. [18] Berube Y, Zhuang J, Rungis D, et al. Characterization of EST SSRs in loblolly pine and spruce[J]. Tree Genetics & Genomes, 2007, 3(3):251-259. [19] 樊洪泓, 李廷春, 李正鹏, 等. 银杏EST序列中微卫星的分布特征[J]. 基因组学与应用生物学, 2009, 5(5):869-873.Fan H H, Li T C, Li Z P, et al. Characteristics of microsatellite in ginkgo EST sequences[J]. Genomics and Applied Biology, 2009, 5(5):869-873. [20] Cho Y G, Ishii, Temnykh S, et al. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice(Oryza sativa)[J]. Theor Appl Genet, 2000, 100(7):13-722. [21] Eujayl I, Sorrells M, Baum M, et al. Assessment of genotypic variation among cultivated durum wheat based on EST-SSRS and genomic SSRS[J]. Euphytica, 2001, 119(1-2):39-43. [22] Tuskan G A, Gunter L E, Yang, et al. Characterization of microsatellites revealed by genomic sequencing of Populus trichocarpa [J]. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 2004, 34(1):85-93. [23] Dutta S, Kumawat G, Singh B P, et al. Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea[Cajanus cajan (L.)Millspaugh][J]. BMC Plant Biol, 2011, 11(1):17. [24] Heuertz M, De Paoli E, Kallman T, et al. Multilocus patterns of nucleotide diversity, linkage disequilibrium and demographic history of Norway spruce[Picea abies(L.)Karst][J]. Genetics, 2006, 174(4):2095-2105. [25] Li X G, Wu H X, Southerton S G. Comparative genomics reveals conservative evolution of the xylem transcriptome in vascular plants[J]. BMC Evolutionary Biology, 2010, 10:190. [26] Nystedt B, Street N R, Wetterbom A, et al. The Norway spruce genome sequence and conifer genome evolution[J]. Nature, 2013, 497(7451):579-84. [27] Buschiazzo E, Ritland C, Bohlmann J, et al. Slow but not low:genomic comparisons reveal slower evolutionary rate and higher dN/dS in conifers compared to angiosperms[J]. BMC Evolutionary Biology, 2012, 12(1):8. [28] Liewlaksaneeyanawin C, Ritland C E, El-Kassaby Y A, et al. Single-copy, species-transferable microsatellite markers developed from loblolly pine ESTs[J]. Theoretical and Applied Genetics, 2004,109(2):361-369. [29] Chagne D, Chaumeil P, Ramboer A, et al. Cross-species transferability and mapping of genomic and cDNA SSRs in pines[J]. Theoretical and Applied Genetics, 2004, 109(6):1204-1214. [30] Rungis D, Berube Y, Zhang J, et al. Robust simple sequence repeat markers for spruce(Picea spp.)from expressed sequence tags[J]. Theoretical and Applied Genetics, 2004,109(6):1283-1294. [31] Rajora O P, Rahman M H, Dayanandan S, et al. Isolation, characterization, inheritance and linkage of microsatellite DNA markers in white spruce (Picea glauca)and their usefulness in other spruce species[J]. Mol Gen Genet, 2000,264:871-882. [32] Moriguchi Y, Ueno S, Ujino-Ihara T, et al. Characterization of EST-SSRs from Cryptomeria japonica[J]. Conserv Genet Resour, 2009, 1(1):373-376. [33] Li S X, Yin T M, Wang M X, et al. Characterization of microsatellites in the coding regions of the Populus genome [J]. Molecular Breeding, 2011, 27(1):59-66. [34] Echt C S, Saha S, Krutovsky K V, et al. An annotated genetic map of loblolly pine based on microsatellite and cDNA markers [J]. BMC Genetics, 2011, 12(1):17. |
[1] | 马坛, 田野, 王书军, 李文昊, 段启英, 张庆源. 不同性别南方型黑杨无性系叶片对土壤短期间歇性干旱的生理响应[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 172-180. |
[2] | 王改萍, 章雷, 曹福亮, 丁延朋, 赵群, 赵慧琴, 王峥. 红蓝光质对银杏苗木生长生理特性及黄酮积累的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 105-112. |
[3] | 宋子琪, 卞国良, 林峰, 胡凤荣, 尚旭岚. 流式细胞仪鉴定青钱柳倍性方法的建立及其应用[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 61-68. |
[4] | 孙旭高, 陶家璐, 谢微, 石洁, 张宝津, 邓小梅. 米老排优树组培技术体系优化研究[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 69-78. |
[5] | 顾宸瑞, 袁启航, 姜静, 穆怀志, 刘桂丰. 基于转录组测序的关联分析定位裂叶桦叶形调控基因[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 39-46. |
[6] | 杨蕴力, 曹俐, 王阳, 顾宸瑞, 陈坤, 刘桂丰. BpGLK1基因干扰表达对裂叶桦叶色及生长的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 18-28. |
[7] | 王伟, 邱志楠, 李爽, 白向东, 刘桂丰, 姜静. CRISPR/Cas9核糖核蛋白介导的无T-DNA插入的白桦BpGLK1精准突变[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 11-17. |
[8] | 国颖, 杨港归, 吴雨涵, 何杰, 何玉洁, 廖浩然, 薛良交. DNA甲基化调控植物组织培养过程的分子机制研究进展[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 1-8. |
[9] | 陈俊娜, 王晓宇, 陈晨, 彭辉武, 陈娟, 黄卫和, 喻方圆. BR对东京野茉莉种子中脂肪酸合成相关酶活性及油脂积累的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 35-41. |
[10] | 宫楠, 祖鑫, 解志军, 朱长红, 李淑娴. 紫荆种子吸胀和层积过程中不同相态水分变化的核磁共振检测[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 42-50. |
[11] | 王章荣, 季孔庶, 徐立安, 邹秉章, 林能庆, 林景泉. 马尾松实生种子园营建技术、现实增益及多世代低成本经营新模式探讨[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 9-16. |
[12] | 欧阳, 欧阳芳群, 孙猛, 王超, 王军辉, 安三平, 王丽芳, 许娜, 王猛. 欧洲云杉无性系幼龄生长节律、年度和密度互作效应及选择策略[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 95-104. |
[13] | 罗芊芊, 李峰卿, 肖德卿, 邓章文, 王建华, 周志春. 两个南方红豆杉天然居群的交配系统分析[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 80-86. |
[14] | 郭伟, 韩秀, 张利, 王迎, 杜辉, 燕语, 孙忠奎, 张林, 李国华, 罗磊. 青檀扦插苗对不同氮素水平的形态、光合生理响应和转录组分析[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 87-96. |
[15] | 刘蓉, 吴德军, 王因花, 任飞, 李丽, 燕丽萍, 周晓锋. 白蜡花粉最佳离体萌发培养基筛选[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 70-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||