选择苏北沿海5、9和15年生杨树人工林作为实验地,采用随机区组设计,设置了N0(CK)、N1(5 g/(m2·a))、N2(10 g/(m2·a))、N3(15 g/(m2·a))、N4(30 g/(m2·a))共5个不同浓度的氮沉降处理,研究氮沉降对土壤细根糖化学组分的影响。结果表明:(1)3个林龄杨树林地下细根中可溶性糖、淀粉含量,在1 a的观测期内,最大值出现在12月份,其中可溶性糖在1 a中的变化幅度最大,最高值与最低值相差约7倍; 而作为结构性碳水化合物的纤维素和木质素在1 a的观测期内相对较为稳定。(2)随着外源氮输入增加,细根中可溶性糖、淀粉含量在N2水平最大,在N4水平则低于对照。而非结构性碳水化合物在氮增加处理的不同水平间差异不显著(p>0.05)。总之,一定浓度的氮增加,将增加细根中活性代谢物质的碳投入。(3)杨树细根生物量与非结构性碳水化合物存在显著的正相关,杨树细根糖化学组分与土壤C、N以及温湿度没有显著相关性。
Abstract
We chose three different ages(5 years, 9 years and 15 years old)of poplar plantations in a coastal area in Dongtai city, Jiangsu province. The experiment used randomized block design with five nitrogen deposition concentration treatments, i.e. N0(CK), N1(5 g/(m2·a)), N2(10 g/(m2·a)), N3(15 g/(m2·a), N4(30 g/(m2·a))in the field. The results showed that:(1)The manimum content of soluble sugar and starch appeared in December, and soluble sugar in one year had the largest change range, the highest and the lowest differed about seven times. While the seasonal variation of structural carbohydrates(cellulose and lignin)was not obvious, and the cellulose and lignin content was relatively stable.(2)With the increase of exogenous nitrogen input, soluble sugar, starch and NSC content in the fine roots increased and then decreased, and the largest content at N2, while N4(the most nitrogen input)appeared below N0(control treatment). SC had no significant difference(p>0.05)among of levels of nitrogen increase treatments.(3)There were significantly positive correlation between fine root biomass and NSC, and no significant correlation between soil C, N and carbohydrates compositions, as well as temperature and humidity.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张维, 郭得平. 糖和脱落酸及乙烯互作及其与植物生长发育的关系[J]. 植物生理学通讯, 2005, 41(3):376-380. Zhang W, Guo D P. Sugar, abscisic acid and ethylene in relation to plant growth and development[J].Plant Physiology Communications, 2005, 41(3):376-380.
[2] 赵江涛, 李晓峰, 李航, 等. 可溶性糖在高等植物代谢调节中的生理作用[J]. 安徽农业科学, 2006, 34(24): 6423-6425,6427. Zhang J T, Li X F, Li H, et al. Research on the role of the soluble sugar in the regulation of physiological metabolism in higher plant[J]. Journal of Anhui Agricultural Science,2006, 34(24): 6423-6425,6427.
[3] Oliveira I C, Coruzzi G M. Carbon and amino acids reciprocally modulate the expression of glutamine synthetase in Arabidopsis[J]. Plant Physiology, 1999, 121(1): 301-309.
[4] Scheible W R, González-Fontes A, Lauerer M, et al.Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco[J]. The Plant Cell, 1997, 9(5): 783-798.
[5] Sheen J, Zhou L, Jang J C. Sugars as signaling molecules[J]. Current Opinion in Plant Biology, 1999, 2(5): 410-418.
[6] Hoch G, Richter A, Körner C. Non-structural carbon compounds in temperate forest trees[J]. Plant, Cell and Environment, 2003, 26(7): 1067-1081.
[7] 于丽敏, 王传宽, 王兴昌. 三种温带树种非结构性碳水化合物的分配[J]. 植物生态学报, 2011, 35(12): 1245-1255. Yu L M, Wang C K, Wang X C. Allocation of nonstructural carbohydrates for three temperate tree species in Northeast China[J]. Chinese Journal of Plant Ecology, 2011, 35(12): 1245-1255.
[8] 范鹏程, 田静, 黄静美, 等.花生壳中纤维素和木质素含量的测定方法[J]. 重庆科技学院学报:自然科学版, 2008, 10(5):64-67. Fan P C, Tian J, Huang J M, et al. On the determination of cellulose and lignin of peanut shells[J]. Journal of Chongqing Institute of Technology:Natural Science Edition, 2008, 10(5):64-67.
[9] Overdieck D, Fenselau K. Elevated CO2 concentration and temperature effects on the partitioning of chemical components along juvenile Scots pine stems(Pinus sylvestris L.)[J]. Trees, 2009, 23(4): 771-786.
[10] 克热木·伊力, 新居直祐. 不同氮素施用量对葡萄叶、枝、根碳水化合物含量的影响[J]. 新疆农业大学学报, 2001, 24(1):64-68. Karim A, Naosuki N. Effect of different amount of nitrogen fertilizer on carbohydrate content in leaves, shoots and roots of grape[J]. Journal of Xinjiang Agricultural University, 2001, 24(1):64-68.
[11] 杨焕文, 耿宗泽, 李佛琳, 等. 不同施氮量的烤烟烟叶大田生长期碳水化合物的变化[J]. 云南农业大学学报, 2003, 18(2):153-158. Yang H W, Gen W Z, Li F L, et al. Changes of carbohydrate content in flue cured tobacco leaves with different levels of nitrogen applied during growth phase[J]. Journal of Yunnan Agricultural University, 2003, 18(2):153-158.
[12] 潘庆民, 韩兴国, 白永飞, 等. 植物非结构性贮藏碳水化合物的生理生态学研究进展[J]. 植物学通报, 2002, 28(1):30-38. Pan Q M, Han X G, Bai Y F, et al. Advances in physiology and ecology studies on stored non-structure carbohydrates in plants[J]. Chinese Bulletin of Botany, 2002, 28(1): 30-38.
[13] Pregitzer K S, Kubiske M E, Yu C K, et al. Relationships among root branch order, carbon, and nitrogen in four temperate species[J]. Oecologia, 1997, 111:302-308.
[14] Pregitzer K S, Deforest J L, Burton A J, et al. Fine root architecture of nine North American trees[J]. Ecological Monographs, 2002, 72(2): 293-309.
[15] Guo D L, Li H, Mitchell R J, et al. Fine root heterogeneity by branch order: exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods[J]. New Phytologist, 2008, 177(2):443-456.
[16] 李存东, 董海荣, 李金才. 不同形态氮比例对棉花苗期光合作用及碳水化合物代谢的影响[J]. 棉花学报, 2003, 15(2):87-90. Li C D, Dong H R, Li J C. Influence of various ratios of nitrogen nutrition on photosynthetic and sugar metabolism of cotton[J]. Cotton Science, 2003, 15(2):87-90.
[17] 肖凯, 张树华, 邹定辉, 等. 不同形态氮素营养对小麦光合特性的影响[J]. 作物学报, 2000, 26(1):53-58. Xiao K, Zhang S H, Zou D H, et al. The effects of different nitrogen nutrition forms on photosynthetic characteristics in wheat leaves[J]. Acta Agronomica Sinica, 2000, 26(1):53-58.
基金
收稿日期:2013-12-08 修回日期:2014-03-06
基金项目:国家重点基础研究发展计划(2012CB416904); 国家自然科学基金项目(31270489); 江苏高校优势学科建设工程资助项目(PAPD); 江苏高校协同创新计划
第一作者:徐钰,硕士生。*通信作者:阮宏华,教授。E-mail: hhruan@njfu.edu.cn。
引文格式:徐钰,许凯,王文娟,等. 不同林龄杨树细根糖化学组分对氮沉降的响应[J]. 南京林业大学学报:自然科学版,2014,38(3):13-18.