南京林业大学学报(自然科学版) ›› 2014, Vol. 38 ›› Issue (04): 69-74.doi: 10.3969/j.issn.1000-2006.2014.04.013
王 东,李瑞霞,陈信力,关庆伟*
出版日期:
2014-07-31
发布日期:
2014-07-31
基金资助:
WANG Dong, LI Ruixia, CHEN Xinli, GUAN Qingwei*
Online:
2014-07-31
Published:
2014-07-31
摘要: 以江苏南京溧水林场实施了4种间伐强度(CK(不间伐)、弱度间伐(LIT,比例30%)、中度间伐(MIT,比例50%)、强度间伐(HIT,比例70%))的25年生杉木人工林为研究对象,探讨了不同根序上一级根直径、根长和比根长的差异及间伐(6年)对其生长的影响。将一级根按着生位置的不同分为4类:Ar(2级根上的一级根)、Br(3级根上的一级根)、Cr(4级根上的一级根)、Dr(5级根上的一级根)。结果表明:杉木人工林不同根序上一级根数量和根长存在显著差异(p<0.05),而直径和比根长无显著差异(p>0.05)。随着一级根着生根序的增加,一级根数量极显著减小(p<0.01),所占总根数比例从大到小为Ar(79%)>Br(13%)>Cr(6%)>Dr(2%); Dr类根的根长显著大于其余3类根的根长(p<0.05)。与对照相比,间伐仅对Br类根的直径及Dr类根的直径和根长有显著影响(p<0.05)。其中,Br类根的直径在LIT和HIT中显著减小; Dr类根的直径在MIT中显著增大,而根长却在LIT中显著减小。相关分析表明,土壤表层(0~10 cm)林下非目的树种活细根生物量、土壤亚表层(≥10~20 cm)全氮分别与Br类、Dr类根的直径呈显著的负相关关系,土壤表层(0~10 cm)的全氮则与Dr类根的根长呈显著正相关关系。
中图分类号:
王东,李瑞霞,陈信力,等. 杉木人工林不同根序的一级根形态差异及其对间伐的响应[J]. 南京林业大学学报(自然科学版), 2014, 38(04): 69-74.
WANG Dong, LI Ruixia, CHEN Xinli, GUAN Qingwei. Variations of morphology among first order roots in different branch orders and the effect of thinning on its’ morphology in Chinese fir plantation[J].Journal of Nanjing Forestry University (Natural Science Edition), 2014, 38(04): 69-74.DOI: 10.3969/j.issn.1000-2006.2014.04.013.
[1] 王向荣,谷加存,梅莉,等. 水曲柳和落叶松细根形态及母根与子根比例关系[J]. 生态学报, 2006,26(6): 1686-1692.Wang X R, Gu J C, Mei L,et al. Fine root order morphology and proportion between mother roots and daughter roots in Fraxinus mandshurica and Larix gmelinii[J]. Acta Ecologica Sinica, 2006, 26(6): 1686-1692. [2] Guo D L, Mitchell R J, Withington J M,et al. Endogenous and exogenous controls of root life span, mortality and nitrogen flux in a longleaf pine forest: root branch order predominates[J]. J Ecol, 2008, 96(4): 737-745. [3] Pregitzer K S, DeForest J L, Burton A J,et al. Fine root architecture of nine North American trees[J]. Ecol Monogr, 2002, 72(2): 293-309. [4] 宋森, 谷加存, 全先奎,等. 水曲柳和兴安落叶松人工林细根分解研究[J]. 植物生态学报, 2008,32(6): 1227-1237.Song S, Gu J C, Quan X K,et al. Fine root decomposition of Fraxinus mandshurica and Larix gmelinii plantations[J]. Chinese Journal of Plant Ecology, 2008,32(6): 1227-1237. [5] Majdi H, Damm E, Nylund J E. Longevity of mycorrhizal roots depends on branching order and nutrient availability[J]. New Phytol, 2001, 150(1): 195-202. [6] 刘颖, 谷加存, 卫星,等. 树木不同根序上一级根的形态、解剖结构和氮含量[J]. 植物生态学报, 2010,34(11): 1336-1343.Liu Y, Gu J C, Wei X, et al. Variations of morphology, anatomical structure and nitrogen content among first-order roots in different positions along branch orders in tree species[J]. Chinese Journal of Plant Ecology, 2010, 34(11): 1336-1343. [7] López B, Sabaté S, Gracia C. Fine roots dynamics in a mediterranean forest: effects of drought and stem density[J]. Tree Physiol, 1998, 18(8-9): 601-606. [8] Noguchi K, Han Q M, Araki M G,et al. Fine-root dynamics in a young hinoki cypress(Chamaecyparis obtusa)stand for 3 years following thinning[J]. Journal of Forest Research, 2011, 16(4): 284-291. [9] Dighton J, Helmisaari H S, Maghirang M,et al. Impacts of forest post thinning residues on soil chemistry, fauna and roots: Implications of residue removal in Finland[J]. Appl Soil Ecol, 2012, 60: 16-22. [10] de Miranda M S L, de Moraes G J L, Gava J L. Pre-and post-harvest fine root growth in Eucalyptus grandis stands installed in sandy and loamy soils[J]. Forest Ecol Manag, 2007, 246(2-3): 186-195. [11] Wang Z Q, Guo D L, Wang X R, et al. Fine root architecture, morphology, and biomass of different branch orders of two Chinese temperate tree species[J]. Plant Soil, 2006, 288(1-2): 155-171. [12] 刘佳, 项文化, 徐晓,等. 湖南会同5个亚热带树种的细根构型及功能特征分析[J]. 植物生态学报, 2010,34(8): 938-945.Liu J, Xiang W H, Xu X, et al. Analysis of architecture and functions of fine roots of five subtropical tree species in Huitong, Hunan Province, China[J]. Chinese Journal of Plant Ecology, 2010,34(8): 938-945. [13] 潘瑞炽. 植物生理学[M].北京, 高等教育出版社, 2001. [14] 王祖华, 李瑞霞, 郝俊鹏,等. 间伐对杉木人工林不同根序细根形态的影响[J]. 东北林业大学学报, 2011,39(6): 13-15,19.Wang Z H, Li R X, Hao J P, et al. Effects of thinning on fine root morphology in Chinese fir plantations[J]. Journal of Northeast Forestry University, 2011, 39(6):13-15,19. [15] Curt T, Coll L, Prévosto B,et al. Plasticity in growth, biomass allocation and root morphology in beech seedlings as induced by irradiance and herbaceous competition[J]. Ann Forest Sci, 2005, 62(1): 51-60. [16] Fujii S, Kasuya N. Fine root biomass and morphology of Pinus densiflora under competitive stress by Chamaecyparis obtusa[J]. Journal of Forest Research, 2008, 13(3): 185-189. [17] 王祖华, 李瑞霞, 王晓杰,等. 间伐对杉木人工林林下植被多样性及生物量的影响[J]. 生态环境学报, 2010,19(12): 2778-2782. Wang Z H, Li R X, Wang X J,et al. Effects of thinning on biomass and species diversity of understory in Chinese fir plantations[J]. Chinese Journal of Ecology and Environmental Sciences, 2010, 19(12): 2778-2782. [18] Krasowski M J, Owens J N. Tracheids in white spruce seedling’s long lateral roots in response to nitrogen availability[J]. Plant and Soil, 1999, 217(1-2): 215-228. [19] Huang G, Zhao X Y, Zhao H L, et al. Linking root morphology, longevity and function to root branch order: a case study in three shrubs[J]. Plant Soil, 2010, 336(1-2): 197-208. [20] Domisch T, Finér L, Lehto T. Effects of soil temperature on biomass and carbohydrate allocation in Scots pine(Pinus sylvestris)seedlings at the beginning of the growing season[J]. Tree Physiol, 2001, 21(7): 465-472. [21] Walker M D, Walker D A, Welker J M,et al. Long-term experimental manipulation of winter snow regime and summer temperature in arctic and alpine tundra[J]. Hydrol Process, 1999, 13(1415): 2315-2330. [22] Drennan P M, Nobel P S. Root growth dependence on soil temperature for Opuntia ficus‐indica: influences of air temperature and a doubled CO2 concentration[J]. Funct Ecol, 1998, 12(6): 959-964. [23] 李彩霞, 孙景生, 周新国,等. 隔沟交替灌溉条件下玉米根系形态性状及结构分布[J]. 生态学报, 2011,31(14): 3956-3963.Li C X, Sun J S, Zhou X G, et al. Root morphology characteristics under alternate furrow irrigation[J]. Acta Ecologica Sinica, 2011,31(14): 3956-3963. [24] 孙玥, 全先奎, 贾淑霞,等. 施用氮肥对落叶松人工林一级根外生菌根侵染及形态的影响[J]. 应用生态学报, 2007,18(8): 1727-1732.Sun Y, Quan X K, Jia S X, et al. Effects of nitrogen fertilization on ectomycorrhizal infection of first order roots and root morphology of Larix gmelinii plantation[J]. Chinese Journal of Applied Ecology, 2007,18(8): 1727-1732. [25] 李瑞霞, 凌宁, 郝俊鹏, 等. 林龄对侧柏人工林碳储量以及细根形态和生物量的影响[J]. 南京林业大学学报:自然科学版, 2013,37(2):21-27. Li R X, Ling N, Hao J P, et al. Effects of stand ages on carbon storage, fine root morphology and biomass in Platycladus orientalis plantation[J]. Journal of Nanjing Forestry University: Nature Sciences Edition, 2013,37(2):21-27. |
[1] | 杨永. 裸子植物的系统分类:历史、现状和展望[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 14-26. |
[2] | 张瑞, 周正虎, 王传宽, 金鹰. 东北温带森林不同材性树种木质部解剖和水力性状[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 229-236. |
[3] | 黄永健, 荀航, 张保, 尤俊昊, 姚曦, 汤锋. HPLC同时测定竹笋中8种酚酸类物质含量的方法研究及其应用[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 237-244. |
[4] | 邓云飞. 安息香科的系统学研究进展[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 27-35. |
[5] | 李家亮, 巫大宇, 毛康珊. 柏木属的分类地位和物种多样性研究现状与建议[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 36-45. |
[6] | 李涌福, 杨庆华, 陈林, 张敏, 向其柏, 王贤荣, 段一凡. 木犀属内分组关系的分类修订[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 58-62. |
[7] | 杨皓, 刘超, 庄家尧, 张树同, 张文韬, 毛国豪. 不同载体菌肥对紫穗槐生长和光合特性及土壤养分的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 81-89. |
[8] | 丁咏, 刘鑫, 张金池, 王宇浩, 陈美玲, 李涛, 刘孝武, 周悦湘, 孙连浩, 廖艺. 酸雨类型转变对杉木林地土壤和细根生长的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 90-98. |
[9] | 武燕, 黄青, 刘讯, 郑睿, 岑佳宝, 丁波, 张运林, 符裕红. 西南喀斯特地区马尾松人工林林龄对土壤理化性质的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 99-107. |
[10] | 卜晓婷, 付威, 李淑娴, 徐志标, 彭大庆, 徐林桥. 幼化和外源激素对娜塔栎嫩枝扦插生根的影响及其生根解剖学观察[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 129-136. |
[11] | 杜晋城, 李欣欣, 王泽亮, 刘偲, 钟毅, 王丽华. 聚乙二醇胁迫下3个油橄榄品种生理指标响应[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 137-143. |
[12] | 方静, 张书曼, 严善春, 武帅, 赵佳齐, 孟昭军. 两种丛枝菌根真菌复合接种对青山杨叶片抗美国白蛾的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 144-154. |
[13] | 张馨方, 王广鹏, 张树航, 李颖, 郭燕. 不同抗螨性板栗差异次生代谢物筛选与分析[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 234-240. |
[14] | 杨宏, 伊贤贵, 王贤荣, 吴桐, 周华近, 陈洁, 李蒙, 朱兆青. 樱花新品种‘元春’[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 275-276. |
[15] | 田梦阳, 朱树林, 窦全琴, 季艳红. 薄壳山核桃-茶间作对‘安吉白茶’速生期光合特性的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 86-96. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||