基于直觉模糊集的阔叶树苗叶片边缘检测

胡春华,李萍萍

南京林业大学学报(自然科学版) ›› 2014, Vol. 38 ›› Issue (06) : 77-80.

PDF(2284277 KB)
PDF(2284277 KB)
南京林业大学学报(自然科学版) ›› 2014, Vol. 38 ›› Issue (06) : 77-80. DOI: 10.3969/j.issn.1000-2006.2014.06.015
研究论文

基于直觉模糊集的阔叶树苗叶片边缘检测

  • 胡春华1,李萍萍2
作者信息 +

Edge detection of hardwood seedlings leaves based on intuitionistic fuzzy set

  • HU Chunhua1,LI Pingping2
Author information +
文章历史 +

摘要

针对田间或苗圃植物背景的复杂性,为准确从采集的样本图片中分割出树苗叶片,提出了一种基于直觉模糊集的阔叶树苗叶边缘检测算法。首先采用3×3模板分别对RGB颜色空间中的R、G、B灰度图进行x方向、y方向、45°以及135°方向模糊聚类,然后采用最大类间方差法提取模糊聚类图像的阈值,最后根据阈值检测出阔叶苗叶边缘。对经典的基于微分算子的边缘检测法与该研究提出的边缘检测算法进行了分析比较,结果证明该研究提出的算法能较好地检测出阔叶树苗叶边缘,特别对于重叠区域叶片也能检测出边缘。

Abstract

In this paper, a novel edge detection method based on intuitionistic fuzzy set(IFS)for hardwood seedlings leaves is proposed to accurately segment the leaves from images in complex background. Firstly, 3×3 templates of the x-direction, y direction, the direction of 45° and 135° were utilized to cluster the R, G, and B gray image respectively. Secondly, the maximum variance method was proposed to extract the fuzzy clustering image threshold. Finally, image edge was detected according to the threshold, where a clear boundary was obtained. Proposed method performed better than classical edge detection methods of differential operator. Experiments for kinds of hardwood seedlings were carried out, and the results indicated that the proposed method was effectiveness to detect the leaf edge, especially for the overlap region.

引用本文

导出引用
胡春华,李萍萍. 基于直觉模糊集的阔叶树苗叶片边缘检测[J]. 南京林业大学学报(自然科学版). 2014, 38(06): 77-80 https://doi.org/10.3969/j.issn.1000-2006.2014.06.015
HU Chunhua,LI Pingping. Edge detection of hardwood seedlings leaves based on intuitionistic fuzzy set[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2014, 38(06): 77-80 https://doi.org/10.3969/j.issn.1000-2006.2014.06.015
中图分类号: TP24   

参考文献

[1] 李先锋,朱伟兴,纪滨,等. 基于图像处理和蚁群优化的形状特征选择与杂草识别[J].农业工程学报,2010,26(10):178-182. Li X F, Zhu W X,Ji B, et al. Shape feature selection and weed recognition based on image processing and ant colony optimization [J]. Transactions of the CSAE, 2010,26(10):178-182.
[2] 胡春华,李萍萍. 基于图像处理的黄瓜缺氮与缺镁判别的研究[J]. 江苏大学学报:自然科学版,2004, 25(S1):9-12. Hu C H, Li P P. Application of image processing to diagnose cucumbers short of Mg and N[J]. Journal of Jiangsu University:National Science Edition, 2004, 25(S1):9-12.
[3] 李寒,王库,边昊一. 基于Mean-shift 和提升小波变换的棉花叶片边缘的图像检测[J].农业工程学报,2010,26(S1):182-186. Li H, Wang K, Bian H Y. Cotton leaf image edge detection using Mean-shift algorithm and lifting wavelet transform [J]. Transactions of the CSAE, 2010, 26(S1): 182-186.
[4] 张辉,马明建. 基于改进Sobel 算法的叶片图像边缘检测[J].农机化研究,2012(5):46-49. Zhang H,Ma M J. An blade edge detection method based improved sobel operator [J]. Agricultural Mechanization Research, 2012(5):46-49.
[5] Zheng L Y,Zhang J T,Wang Q Y. Mean-shift-based color segmentation of images containing green vegetation [J]. Computer and Electronics in Agriculture,2009,65(1): 93-98.
[6] Lopez-Molina C,De Baets B,Bustince H. Generating fuzzy edge images from gradient magnitudes [J]. Computer Vision and Image Understanding,2011,115(11): 1571-1580.
[7] 林开颜,司慧萍, 周强,等. 基于模糊逻辑的植物叶片边缘检测方法[J]. 农业机械学报,2013,44(6):227-231. Lin K Y, Si H P, Zhou Q, et al. Plant leaf edge detection based on fuzzy logic[J]. Tansactions of the Chinese Society for Agricultural Machinery, 2013, 44(6):227-231.
[8] Rafael C Gonzalez, Richard E Woods. Digital Image Processing [M]. 2rd edition. New Jersey, USA: Pearson Education, 2008.
[9] Zadeh L A. Fuzzy sets [J]. Information and Control, 1965, 8(3):338-353.
[10] Alshennawy A A, Aly A A. Edge detection in digital images using fuzzy logic technique[J]. World Academy of Science, Engineering and Technology, 2009, 51: 178-186..
[11] Aijaz Ur Rahman khan, Kavita Thakur. An efficient fuzzy logic based edge detection algorithm for gray scale image [J]. International Journal of Emerging Technology and Advanced Engineering, 2012, 2(8):245-250.
[12] Atanassov K. Intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96.
[13] Atanassov K, Pasi G, Yager R R. Intuitionistic fuzzy interpretations of multi-criteria multi-person and multi-measurement tool decision making [J]. International Journal of Systems Science, 2005, 36(14):859-868.
[14] Tamalika Chaira. A rank ordered filter for medical image edge enhancement and detection using intuitionistic fuzzy set [J]. Applied Soft Computing, 2012, 12(4):1259-1266.
[15] Tamalika Chaira, Ray A K. A new measure using intuitionistic fuzzy set theory and its application to edge detection [J]. Applied Soft Computing, 2008, 8(2): 919-927.
[16] Mehmet Sezgin, Bülent Sanku. Survey over image thresholding techniques and quantitative performance evaluation [J]. Journal of Electronic Imaging, 2004, 13(1):146-165.

基金

收稿日期:2013-12-17 修回日期:2014-08-07
基金项目:国家自然科学基金项目(31300471); 国家高技术研究发展计划(2012AA102002-4); 江苏高校优势学科建设工程资助项目(PAPD)
第一作者:胡春华,副教授,博士。E-mail:huchunhua@njfu.edu.cn.
引文格式:胡春华,李萍萍. 基于直觉模糊集的阔叶树苗叶片边缘检测[J]. 南京林业大学学报:自然科学版,2014,38(6):77-80.

PDF(2284277 KB)

Accesses

Citation

Detail

段落导航
相关文章

/