绿液预处理过程中杨木木质素结构的变化

孟鑫,吴文娟,金永灿

南京林业大学学报(自然科学版) ›› 2014, Vol. 38 ›› Issue (06) : 93-98.

PDF(1578232 KB)
PDF(1578232 KB)
南京林业大学学报(自然科学版) ›› 2014, Vol. 38 ›› Issue (06) : 93-98. DOI: 10.3969/j.issn.1000-2006.2014.06.018
研究论文

绿液预处理过程中杨木木质素结构的变化

  • 孟 鑫,吴文娟,金永灿*
作者信息 +

Structural changes of poplar lignin in the process of green liquor pretreatment

  • MENG Xin, WU Wenjuan, JIN Yongcan*
Author information +
文章历史 +

摘要

以绿液(Na2S和Na2CO3)对杨木进行预处理,研究了预处理条件对木质素脱除的影响,并用碱性硝基苯氧化表征预处理后木质素化学结构特征的变化。结果表明:杨木原料木质素的碱性硝基苯氧化产物的总得率为2.61 mmol/g,其木质素非缩合部分紫丁香基结构的硝基苯氧化降解产物与愈疮木基摩尔比n(S+SA)/n(V+VA)为2.0; 随着预处理H-因子的升高和用碱量的增加,杨木浆料的木质素脱除率上升,n(S+SA)/n(V+VA)下降; 杨木浆料残余木质素的缩合程度随着木质素脱除率的增加而增大,且紫丁香基丙烷结构比愈疮木基丙烷结构在绿液预处理过程中更容易断裂。

Abstract

Green liquor(Na2S and Na2CO3)was used as a pretreating regent for poplar wood, and the effects of green liquor pretreatment on lignin removal, and lignin structure were investigated in this paper. The residual lignin in the pretreated poplar was characterized by alkaline nitrobenzene oxidation(NBO). The results showed that the total NBO products yield of poplar lignin was 2.61 mmol/g, and the molar ratio of n(S+SA)/n(V+VA)in non-condensed lignin was 2.0. With the increasing of TTA charge and H-factor of green liquor pretreatment, lignin was effectively removed, and the yields of total NBO products, and the molar ratio of n(S+SA)/n(V+VA)decreased. The condensation degree of residual lignin in pretreated solid increased with the lignin removal, and the syringyl lignin was more degradable as compared to guaiacyl type in green liquor pretreatment.

引用本文

导出引用
孟鑫,吴文娟,金永灿. 绿液预处理过程中杨木木质素结构的变化[J]. 南京林业大学学报(自然科学版). 2014, 38(06): 93-98 https://doi.org/10.3969/j.issn.1000-2006.2014.06.018
MENG Xin, WU Wenjuan, JIN Yongcan. Structural changes of poplar lignin in the process of green liquor pretreatment[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2014, 38(06): 93-98 https://doi.org/10.3969/j.issn.1000-2006.2014.06.018
中图分类号: TS743.14   

参考文献

[1] Mosier N, Wyman C E, Dale B, et al. Features of promising technologies for pretreatment of lignocellulosic biomass[J]. Bioresource Technology, 2005, 96(6): 673-686.
[2] Fang S, Xu X, Lu S, et al. Growth dynamics and biomass production in short-rotation poplar plantations: 6-year results for three clones at four spacings[J]. Biomass and Bioenergy, 1999, 17: 415-425.
[3] Christersson L. Poplar plantations for paper and energy in the south of sweden[J]. Biomass and Bioenergy, 2008, 32(11): 997-1002.
[4] Jin Y, Jameel H, Chang H M, et al. Green liquor pretreatment of mixed hardwood for ethanol production in a repurposed kraft pulp mill[J]. Journal of Wood Chemistry and Technology, 2010, 30: 86-104.
[5] Gu F, Wang W, Jing L, et al. Effects of green liquor pretreatment on the chemical composition and enzymatic digestibility of rice straw[J]. Bioresource Technology,2013, 149: 375-382.
[6] Gu F, Yang L, Jin Y, et al. Green liquor pretreatment for improving enzymatic hydrolysis of corn stover[J]. Bioresource Technology,2012, 124: 299-305.
[7] del Río J C, Gutiérrez A, Hernando M, et al. Determining the influence of eucalypt lignin composition in paper pulp yield using Py-GC/MS[J]. Journal of Analytical and Applied Pyrolysis, 2005, 74(1): 110-115.
[8] Studer M H, DeMartini J D, Davis M F, et al. Lignin content in natural Populus variants affects sugar release[J]. Proceedings of the National Academy of Sciences, 2011, 108(15):6300-6305.
[9] Vroom K. The H factor: a means of expressing cooking times and temperatures as a single variable[J]. Pulp Pap Mag Can, 1957, 58: 228-231.
[10] Sluiter A, Hames B, Ruiz R, et al. NREL/TP-510-42618, Determination of structural carbohydrates and lignin in biomass[S]. Laboratory Analytical Procedure, National Renewable Energy Laboratory, 2008.
[11] Chen C L. Nitrobenzene and cupric oxidations[M]// Lin S Y, Dence C W. Methods in lignin chemistry. Springer-Verlag, Berlin, 1992.
[12] Sjöström E. Wood Chemistry: Fundamentals and Applications[M]. New York: Academic Press, 1993.
[13] Faustino H, Gil N, Baptista C. Antioxidant activity of lignin phenolic compounds extracted from kraft and sulphite black liquors[J]. Molecules, 2010, 15(12): 9308-9322.
[14] Chang H-m, Sarkanen K V. Species variation in lignin-effect of species on rate of kraft delignification[J]. Tappi, 1973, 56(3): 132-134.
[15] González-Vila F J, Almendros G,del Río J C, et al. Ease of delignification assessment of wood from different Eucalyptus species by pyrolysis(TMAH)-GC/MS and CP/MAS 13C-NMR spectrometry[J]. Journal of Analytical and Applied Pyrolysis, 1999, 49: 295-305.
[16] Santos R B, Capanema E A, Balakshin M Y, et al. Effect of hardwoods characteristics on kraft pulping process: emphasis on lignin structure[J]. Bioresouces, 2011, 6(4): 3623-3637.
[17] 杨林峰. 基于木粉碱溶体系的木质素分离及结构表征[D]. 南京: 南京林业大学, 2013. Yang L F. Isolation and structural characterization of lignin from softwood based on complete dissolution in alkaline aqueous solution[D].Nanjing: Nanjing Forestry University, 2013.
[18] Sixta H, Potthast A, Krotschek A W. Chemical pulping processes[C]// Sixta H. Handbook of Pulp. Verlag:Wiley-Vch, 2006.
[19] Sakakibara A, Sano Y. Chemistry of lignin[C]// David N S Hon, Shiraishi N. Wood and Cellulosic Chemistry. New York: Marcel Dekker, 2001.
[20] Gutiérrez A, Rodríguez I M, del Río J C. Chemical characterization of lignin fractions in industrial hemp bast fibers used for manufacturing high-quality paper pulps[J]. Journalof Agriculturaland Food Chemistry, 2006, 54(6): 2138-2144.
[21] Lourenço A, Gominho J, Marques A V, et al. Reactivity of syringyl and guaiacyl lignin units and delignification kinetics in the kraft pulping of Eucalyptus globulus wood using Py-GC-MS/FID[J]. Bioresource Technology, 2012, 123: 296-302.
[22] Villar J C, Caperos A, Garcia-Ochoa F. Oxidation of hardwood kraft-lignin to phenolic derivatives. Nitrobenzene and copper oxide as oxidants[J].Journal of Wood Chemistry and Technology, 1997, 17(3): 259-285.
[23] Ibarra D, Chávez M I, Rencoret J, et al. Lignin modification during Eucalyptus globulus kraft pulping followed by totally chlorine-free bleaching: a two-dimensional nuclear magnetic resonance, Fourier transform infrared, and pyrolysis-gas chromatography/mass spectrometry study[J]. Journal of Agricultural and Food Chemistry, 2007, 55(9): 3477-3490.
[24] Tsutsumi Y, Kondo R, Sakai K, et al. The difference of reactivity between syringyl lignin and guaiacyl lignin in alkaline systems[J]. Holzforschung, 1995, 49(5): 423-428.

基金

收稿日期:2013-10-13 修回日期:2014-01-31
基金项目:国家重点基础研究发展计划(2010CB732205); 国家自然科学基金项目(31070512,31370571); 高等学校博士学科点专项科研基金项目(20133204110006); 江苏高校优势学科建设工程资助项目(PAPD)
第一作者:孟鑫,硕士生。*通信作者:金永灿,教授,博士。E-mail:jinyongcan@njfu.edu.cn。
引文格式:孟鑫,吴文娟,金永灿. 绿液预处理过程中杨木木质素结构的变化[J]. 南京林业大学学报:自然科学版,2014,38(6):93-98.

PDF(1578232 KB)

Accesses

Citation

Detail

段落导航
相关文章

/