[1] Mosier N, Wyman C E, Dale B, et al. Features of promising technologies for pretreatment of lignocellulosic biomass[J]. Bioresource Technology, 2005, 96(6): 673-686.
[2] Fang S, Xu X, Lu S, et al. Growth dynamics and biomass production in short-rotation poplar plantations: 6-year results for three clones at four spacings[J]. Biomass and Bioenergy, 1999, 17: 415-425.
[3] Christersson L. Poplar plantations for paper and energy in the south of sweden[J]. Biomass and Bioenergy, 2008, 32(11): 997-1002.
[4] Jin Y, Jameel H, Chang H M, et al. Green liquor pretreatment of mixed hardwood for ethanol production in a repurposed kraft pulp mill[J]. Journal of Wood Chemistry and Technology, 2010, 30: 86-104.
[5] Gu F, Wang W, Jing L, et al. Effects of green liquor pretreatment on the chemical composition and enzymatic digestibility of rice straw[J]. Bioresource Technology,2013, 149: 375-382.
[6] Gu F, Yang L, Jin Y, et al. Green liquor pretreatment for improving enzymatic hydrolysis of corn stover[J]. Bioresource Technology,2012, 124: 299-305.
[7] del Río J C, Gutiérrez A, Hernando M, et al. Determining the influence of eucalypt lignin composition in paper pulp yield using Py-GC/MS[J]. Journal of Analytical and Applied Pyrolysis, 2005, 74(1): 110-115.
[8] Studer M H, DeMartini J D, Davis M F, et al. Lignin content in natural Populus variants affects sugar release[J]. Proceedings of the National Academy of Sciences, 2011, 108(15):6300-6305.
[9] Vroom K. The H factor: a means of expressing cooking times and temperatures as a single variable[J]. Pulp Pap Mag Can, 1957, 58: 228-231.
[10] Sluiter A, Hames B, Ruiz R, et al. NREL/TP-510-42618, Determination of structural carbohydrates and lignin in biomass[S]. Laboratory Analytical Procedure, National Renewable Energy Laboratory, 2008.
[11] Chen C L. Nitrobenzene and cupric oxidations[M]// Lin S Y, Dence C W. Methods in lignin chemistry. Springer-Verlag, Berlin, 1992.
[12] Sjöström E. Wood Chemistry: Fundamentals and Applications[M]. New York: Academic Press, 1993.
[13] Faustino H, Gil N, Baptista C. Antioxidant activity of lignin phenolic compounds extracted from kraft and sulphite black liquors[J]. Molecules, 2010, 15(12): 9308-9322.
[14] Chang H-m, Sarkanen K V. Species variation in lignin-effect of species on rate of kraft delignification[J]. Tappi, 1973, 56(3): 132-134.
[15] González-Vila F J, Almendros G,del Río J C, et al. Ease of delignification assessment of wood from different Eucalyptus species by pyrolysis(TMAH)-GC/MS and CP/MAS 13C-NMR spectrometry[J]. Journal of Analytical and Applied Pyrolysis, 1999, 49: 295-305.
[16] Santos R B, Capanema E A, Balakshin M Y, et al. Effect of hardwoods characteristics on kraft pulping process: emphasis on lignin structure[J]. Bioresouces, 2011, 6(4): 3623-3637.
[17] 杨林峰. 基于木粉碱溶体系的木质素分离及结构表征[D]. 南京: 南京林业大学, 2013.
Yang L F. Isolation and structural characterization of lignin from softwood based on complete dissolution in alkaline aqueous solution[D].Nanjing: Nanjing Forestry University, 2013.
[18] Sixta H, Potthast A, Krotschek A W. Chemical pulping processes[C]// Sixta H. Handbook of Pulp. Verlag:Wiley-Vch, 2006.
[19] Sakakibara A, Sano Y. Chemistry of lignin[C]// David N S Hon, Shiraishi N. Wood and Cellulosic Chemistry. New York: Marcel Dekker, 2001.
[20] Gutiérrez A, Rodríguez I M, del Río J C. Chemical characterization of lignin fractions in industrial hemp bast fibers used for manufacturing high-quality paper pulps[J]. Journalof Agriculturaland Food Chemistry, 2006, 54(6): 2138-2144.
[21] Lourenço A, Gominho J, Marques A V, et al. Reactivity of syringyl and guaiacyl lignin units and delignification kinetics in the kraft pulping of Eucalyptus globulus wood using Py-GC-MS/FID[J]. Bioresource Technology, 2012, 123: 296-302.
[22] Villar J C, Caperos A, Garcia-Ochoa F. Oxidation of hardwood kraft-lignin to phenolic derivatives. Nitrobenzene and copper oxide as oxidants[J].Journal of Wood Chemistry and Technology, 1997, 17(3): 259-285.
[23] Ibarra D, Chávez M I, Rencoret J, et al. Lignin modification during Eucalyptus globulus kraft pulping followed by totally chlorine-free bleaching: a two-dimensional nuclear magnetic resonance, Fourier transform infrared, and pyrolysis-gas chromatography/mass spectrometry study[J]. Journal of Agricultural and Food Chemistry, 2007, 55(9): 3477-3490.
[24] Tsutsumi Y, Kondo R, Sakai K, et al. The difference of reactivity between syringyl lignin and guaiacyl lignin in alkaline systems[J]. Holzforschung, 1995, 49(5): 423-428. |