采用普通研磨和液氮研磨两种方法对桉树木材进行研磨,用光学显微镜测量研磨后的木粉颗粒长度,用XRD测量木粉相对结晶度。结果表明:两种研磨条件下,随着研磨时间延长,木粉颗粒长度都有减小的趋势,且采用液氮研磨时木粉颗粒平均长度小于普通研磨的木粉颗粒平均长度; 另外,两种研磨条件下木粉颗粒长度的变异系数都较大,但普通研磨时随着时间延长变异系数有下降趋势,而液氮研磨时没有明显规律。两种研磨条件下,随着研磨时间延长,木粉相对结晶度都呈现出减小的趋势,且在研磨时间为0~30 min,相同研磨时间,普通研磨的木粉相对结晶度低于液氮研磨的木粉相对结晶度; 在研磨时间超过30 min以后,普通研磨和液氮研磨的木粉相对结晶度趋于一致。通过液氮研磨的方法,能有效改善桉树木粉的颗粒长度,且在一定时间内对其相对结晶度的改变较小。
Abstract
Particle length and relative crystallinity of eucalyptus powder obtained by common milling and liquid nitrogen milling were measured by light microscope and XRD. The results showed that the particle length of eucalyptus powder was decreased with increasing of milling time, and the average length of eucalyptus powder with liquid nitrogen milling was smaller. In addition, coefficient variation of particle length in eucalyptus powder was large under the two different milling conditions, and the coefficient variation of powder obtained by common milling was decreased with increasing of milling time, but there was no abvious regularity when the powder was obtained with liquid nitrogen milling. On the other hand, relative crystallinity of eucalyptus powder was decreased with extending milling time under the two different milling conditions. Moreover, relative crystallinity of eucalyptus powder with common milling was smaller in the first 30 minutes under the same milling time, but relative crystallinity of eucalyptus powder with common milling and liquid nitrogen milling were similar after 30 minutes. Particle length of eucalyptus powder could be improved extremely with liquid nitrogen milling, and relative crystallinity of it was changed very few in a certain period of some time.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Sun N, Rahman M, Qin Y, et al. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate[J]. Green Chem, 2009,11(5):646-655.
[2] Voitl T, Nagel M V, Rohr P R. Analysis of products from the oxidation of technical lignins by oxygen and H3PMo12O40 in water and aqueous methanol by size-exclusion chromatography[J]. Holzforschung, 2010, 64(1):13-19.
[3] Mäki-Arvela P, Anugwom I, Virtanen P, et al. Dissolution of lignocellulosic materials and its constituents using ionic liquids-a review[J]. Industrial Crops and Products, 2010,32(3):175-201.
[4] Zhang H, Wu J, Zhang J, et al. 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose[J]. Macromolecules, 2005,38(20):8272-8277.
[5] King A, Kilpeläinen I, Heikkinen S, et al. Hydrophobic interactions determining functionalized lignocellulose solubility in dialkylimidazolium chlorides, as probed by 31P NMR[J]. Biomacromolecules, 2009, 10(2): 458-463.
[6] Abdulkhani A, Marvast E H, Ashori A, et al. Effects of dissolution of some lignocellulosic materials with ionic liquids as green solvents on mechanical and physical properties of composite films[J]. Carbohydrate Polymers, 2013,95(1):57-63.
[7] Kilpeläinen I, Xie H, King A, et al. Dissolution of wood in ionic liquids[J]. Journal of Agricultural and Food Chemistry, 2007,55(22):9142-9148.
[8] Xu J K, Sun Y C, Xu F, et al. Characterization of hemicelluloses obtained from partially delignified eucalyptus using ionic liquid pretreatment[J]. BioResources, 2013,8(2):1946-1962.
[9] Fukazawa K, Revol J F, Jurasek L, et al. Relationship between ball milling and the susceptibility of wood to digestion by cellulase[J]. Wood Science and Technology, 1982,16(4):279-285.
[10] 江水泉, 刘木华, 赵杰文, 等. 食品及农畜产品的冷冻粉碎技术及其应用[J].粮油食品科技, 2003,11(5):44-45.
Jang S Q, Liu M H, Zhao J W, et al. The freeze grinding technology in food, farm product and livestock product[J]. Science and Technology of Cereals,Oils and Foods, 2003,11(5):44-45.
[11] 张伟敏,蒲云峰,钟耕. 低温粉碎技术在水产品加工中的应用[J].冷饮与速冻食品工业, 2005,11(4):9-11.
Zhang W M, Pu Y F, Zhong G.Application of freeze grinding technology in sea product[J]. Beverage & Fast Frozen Food Industry, 2005,11(4):9-11.
[12] Chakraborty A,Sain M,Kortschot M. Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing[J]. Holzforschung, 2005,59(1):102-107.
[13] 杨民胜,李天会. 中国桉树研究现状与科学经营[J].桉树科技, 2005,22(2):1-7.
Yang M S, Li T H. Progress in the research of eucalyptus in China and its scientific management[J]. Eucalypt Science & Technology, 2005,22(2):1-7.
[14] 江泽慧, 王喜明. 桉树人工林木材干燥与皱缩[M]. 北京:中国林业出版社, 2003.
Jiang Z H, Wang X M. Wood drying and collapse of eucalyptus plantation[M]. Beijing: China Forestry Publishing House,2003.
[15] 殷亚方,姜笑梅,吕建雄,等. 我国桉树人工林资源和木材利用现状[J].木材工业, 2001,15(5):3-5.
Yin Y F, Jiang X M, Lv J X, et al.Status of resources and wood utilization of eucalyptus plantation in china[J]. China Wood Industy, 2001,15(5):3-5.
[16] Segal L,Creely J,Martin A,et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer[J]. Textile Research Journal, 1959,29(10):786-794.
[17] 张琳,顾汉泉,高仁孝. 辐射对纤维素结晶度的影响[J].火炸药学报, 2002(1):76-77.
Zhang L, Gu H Q, Gao R X. Radiation effect on relative crystallinity of cellulose[J]. Chinese Journal of Explosives & Propellants, 2002(1):76-77.
基金
收稿日期:2013-07-09 修回日期:2014-03-20
基金项目:国家自然科学基金项目(30871972); 安徽省高校木材科学与技术重点实验室资助项目
第一作者:熊福全,硕士生。*通信作者:刘盛全,教授。E-mail: liusq@ahau.edu.cn。
引文格式:熊福全, 周亮, 刘盛全,等. 液氮研磨对桉树木粉颗粒结构的影响[J]. 南京林业大学学报:自然科学版,2014,38(6):125-129.