转录组的多态性是探讨物种多样性与分子进化的重要方面。笔者选取物种间保守性较高的HSP70、HSP90蛋白作为研究对象,探讨二者在松材线虫和拟松材线虫基因组中的结构差异,探明他们在松材线虫和拟松材线虫中的特点,并试图揭示两种线虫的系统发育关系。结果表明二者内含子具有丰富的多态性,内含子中的G+C含量也显著不同。核酸序列gABG和gmc2分别编码松材线虫和拟松材线虫HSP70的642个氨基酸,相似性高达99%,仅存在9个氨基酸的差异,并且这种差异是由13个碱基的多态性造成的。gABO和gmc19分别编码松材线虫和拟松材线虫的HSP90,其氨基酸序列相似性为92%。对同义密码子的偏好性分析表明,17种氨基酸对应的58个密码子中,gABG和gmc2存在10个密码子差异,gABO和gmc19存在5个密码子差异。采用邻接法分别构建的系统进化树表明松材线虫与拟松材线虫hsp70和hsp90在系统发育关系上最为接近,并与其他线性动物门物种高度同源。
Abstract
Transcriptome polymorphism is an important aspect for species diversity and species molecular evolution. HSP70 and HSP90 are high-conserved in eukaryotic species. In the study, we analyzed the gene structural variation about hsp70 and hsp90, and the phylogenetic relationships between Bursaphelenchus xylophilus and B. mucronatus. The results showed that parallels and distinctions coexisted in both hsp genes of B. xylophilus and B. mucronatus. Both HSP70s shared 99% similarities, and only 9 of 642 amino acids showed differences in both high-conserved amino sequences, which were caused by 13 nucleic acid bases. Meanwhile, HSP90s possessed of 92% similarities in B. xylophilus and B. mucronatus. There were differences in the 10 codons encoding 17 amino acids between gABG and gmc2, while gABO and gmc19 showed differences in the 5 codons. These diversities were valuable for species diversity and molecular evolution. Moreover, the phylogenetic trees of hsp70 and hsp90 showed high homology of B. xylophilus and B. mucronatus with other nemathelminthes species.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 黄慧芳,马飞. 热激蛋白的分子进化研究[J]. 厦门大学学报:自然科学版, 2004,43(增刊): 166-170.Huang H F,Ma F.Research on molecular evolution of heat shock protein[J]. Journal of Xiamen University: Natural Science,2004,43(Suppl):166-170.
[2] Robertson I, Robertson W M, Jones J T. Direct analysis of the selection of the potato cyst Globodera rostochiensis[J]. Parasitology, 1999,119(2):167-176.
[3] 金钢,叶建仁. 不同线虫在黑松体内的扩展速度与致病性[J]. 南京林业大学学报:自然科学版, 2007,31(1):5-9.Jin G,Ye J R.Research on the relationship between the pathogenicity and the distribution velocity of the nematode in seedling of Pinus thunbergii[J]. Journal of Nanjing Forestry University: Natural Sciences Edition, 2007,31(1):5-9.
[4] 杨宝君,王秋丽,邹卫东,等. 关于拟松材线虫对松树致病性的研究[C]//杨宝君. 中国松材线虫的流行与治理. 北京: 中国林业出版社, 1995: 47-49.Yang B J,Wang Q L,Zhou W D, et al. Research on pathogenicity of Bursaphelenchus mucronatus in Pinus[C]//Yang B J. Popularity and management of Bursaphelenchus xylophilus in China. Beijing: China Forestry Publication,1995:47-49.
[5] 汤坚,叶建仁,陈凤毛,等. 松树体内寄生线虫种类及其致病性[J]. 南京林业大学学报:自然科学版, 2008, 32(3): 112-116.Tang J,Ye J R,Chen F M,et al. Species of parasitic nematode in pine host and pathogenicity[J]. Journal of Nanjing Forestry University: Natural Sciences Edition, 2008, 32(3): 112-116.
[6] 张治宇,林茂松,余本渊. 拟松材线虫对黑松苗的致病性[J]. 南京农业大学学报,2004, 27(1): 46-50.Zhang Z Y,Lin M S,Yu B Y.Pathogenicity of Bursaphelenchus mucronatus on the seedlings of black pine[J]. Journal of Nanjing Agricultural University, 2004, 27(1): 46-50.
[7] Kikuchi T, Jones J T, Aikawa T, et al. A family of glycosyl hydrolase family 45 celluloses from the pinewood nematode Bursaphelenchus xylophilus[J]. FEBS Letters, 2004, 572: 201-205.
[8] 黄麟,叶建仁,刘雪莲. 松材线虫病病原种群分化研究现状[J]. 南京林业大学学报:自然科学版, 2009, 33(4): 135-139.Huang L,Ye J R,Liu X L. Advance in population differentiation of Bursaphelenchus xylophilus[J]. Journal of Nanjing Forestry University: Natural Sciences Edition, 2009, 33(4): 135-139.
[9] 黄麟,郑维佳,吴小芹,等.拟松材线虫两个HSP基因的查除与分析[J].南京林业大学学报:自然科学版,2009,33(2):1-4.Huang L, Zheng W J, Wu X Q, et al. Coning and analysis of two HSP genes from Bursaphelenchus mueronatus[J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2009, 33(2):1-4.
[10] Sharp P M, Haney T M F, Mosurski K R. Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes[J]. Nucleic Acids Research, 1986, 14: 5125-5143.
[11] Liu Q, Feng Y, Xue Q. Analysis of factors shaping codon usage in the mitochondrion genome of Oryza sativa[J]. Mitochondrion, 2004, 4: 313-320.
[12] 刘蓉,奇震,朱小蓬,等. 真核生物DNA非编码区的组分分析[J]. 生物化学与生物物理进展, 2002, 29(4): 583-586.Liu R,Qi Z,Zhu X P,et al. Component analysis of non-coding DNA in eukaryotic[J]. Progress in Biochemistry and Biophysics, 2002, 29(4): 583-586.
[13] 张乐,金龙国,罗玲,等. 大豆基因组和转录组的核基因密码子使用偏好性分析[J]. 作物学报, 2011, 37(6): 965-974.Zhang L,Jin L G,Luo L,et al. Analysis of nuclear gene codon bias on soybean genome and transcriptome[J]. Acta Agronomica Sinica, 2011, 37(6): 965-974.
[14] Gustafsson C, Govindarajan S, Minshull J. Codon bias and heterologous protein expression[J]. Trends in Biotechnology, 2004, 22(7): 346-353.
[15] 杨琳,柯杨. 非编码RNA——功能基因组研究的新热点[J]. 北京大学学报:医学版, 2006, 38(4): 444-446. Yang L,Ke Y. Non-coding RNA—Top news of research on functional genomes[J]. Journal of Peking University: Health Sciences,2006, 38(4): 444-446.
[16] Bonekamp F, Dalboge H, Christensen T,et al. Translation rates of individual codons are not correlated with tRNA abundances or with frequencies of utilization in Escherichia coli [J]. Journal of Bacteriology, 1987, 171(11): 5812-5816.
[17] Dos R M, Wernish L, Savva R. Unexpected correlations between gene expression and codon usage bias from microarray data for the whole Escherichia coli K-12 genome [J]. Nucleic Acids Research, 2003, 31(23): 6976-6985.
[18] Xia X. Maximizing transcription efficiency causes codon usage bias [J]. Genetics, 1996, 144(3): 1309-1320.
基金
收稿日期:2014-11-03 修回日期:2014-12-08
基金项目:“十二五”国家科技支撑计划(2012BAD19B0703); 江苏高校优势学科建设工程资助项目(PAPD)
第一作者:许剑涛,硕士。*通信作者:叶建仁,教授。E-mail: jrye@njfu.edu.cn。
引文格式:许剑涛,黄麟,叶建仁. 松材线虫与拟松材线虫hsp70和hsp90基因结构特征及其分子进化[J]. 南京林业大学学报:自然科学版,2015,39(1):11-16.