以三聚氯氰为改性剂,在碱性条件下对稻草进行接枝改性,利用红外光谱、核磁共振等方法分析了改性前后稻草的结构,采用稀酸催化稻草水解的方法测试了改性稻草的水解性能,探讨了改性稻草的水解效率随改性剂用量的变化规律。结果表明:未改性稻草水解后的还原糖得率为29.9%,而三聚氯氰改性稻草酸水解后还原糖得率随改性剂用量的增加先增加后减小,当三聚氯氰的质量分数为9.6%时,还原糖得率最高,达到45.5%。说明对稻草进行适当的化学改性,可以提高其水解效率。
Abstract
Cyanuric chloride(2,4,6-trichloro-1,3,5-triazine, TCT)was used as a modifier to modify straw under alkaline conditions, and the structure of straw before and after modification was characterized by IR and 13C NMR spectra. The hydrolysis performance of modified straw was test by dilute acid hydrolysis, and the influence of modifier dosage on the hydrolysis efficiency of modified straw was discussed. Test results showed that the yield of the reducing sugar of unmodified straw was only 29.9%, while the highest yield of reducing sugar of the modified straw could be more than 45.5%, as the loading amount of TCT was 9.6%. The analysis result verified that the yield of reducing sugar in acidic hydrolysis of straw could be improved by the appropriate modifications.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Henry R J. Evaluation of plant biomass resources available for replacement of fossil oil[J]. Plant Biotechnology Journal, 2010, 8(3):288-293.
[2] Shafiee S, Topal E. When will fossil fuel reserves be diminished? [J]. Energy Policy, 2009, 37(1):181-189.
[3] Huang Y B, Fu Y. Hydrolysis of cellulose to glucose by solid acid catalysts[J]. Green Chemistry, 2013, 15(5):1095-1111.
[4] Alvira P, Tomás-Pejó E, Ballesteros M, et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review[J]. Bioresource Technology, 2010, 101(13):4851-4861.
[5] 杨雪慧,汤丽娟,章蓉,等.农作物秸秆表面改性处理的研究进展[J].南京林业大学学报:自然科学版,2013,37(3):157-162.Yang X H,Tang L J,Zhang R, et al.Review on progress of crop straws surface modification[J]. Journal of Nanjing Forestry University:Natural Sciences Edition,2013,37(3):157-162.
[6] Jeya M, Zhang Y W, Kim I W, et al. Enhanced saccharification of alkali-treated rice straw by cellulase from Trametes hirsuta and statistical optimization of hydrolysis conditions by RSM[J]. Bioresource Technology, 2009,100(21):5155-5161.
[7] Groenestijn J, Hazewinkel O, Bakker R. Pretreatment of lignocellulose with biological acid recycling(biosulfurol process)[J]. International Sugar Journal, 2006, 131(9):639-641.
[8] Jiang X, Gu J, Tian X Z, et al. Modification of cellulose for high glucose generation[J]. Bioresource Technology, 2012, 104:473-479.
[9] 顾坚,蒋学,田秀枝,等. 2-氯-4,6-二苯氨基-1,3,5-三嗪改性纤维素的制备、结晶结构与水解性能[J]. 化学学报, 2011, 69(24):2975-2980.Gu J, Jiang X, Tian X Z, et al.Preparation, crystal structure and hydrolysis property of 2-Chloro-4,6-dianilino-1,3,5-triazine modified cellulose[J].Acta Chimica Sinica, 2011, 69(24):2975-2980.
[10] 阮明俊,冯年捷,翟华敏. KPS-CAN-NaHSO3接枝稻草丙烯酸吸水材料的合成[J]. 南京林业大学学报:自然科学版,2013,37(5):129-133.Ruan M J,Feng N J,Zhai H M.Synthesis of superabsorbent material by grafting copolymerization of rice straw with acrylic acid using KPS-CAN-NaHSO3 as the complex initiator[J]. Journal of Nanjing Forestry University:Natural Sciences Edition,2013,37(5):129-133.
[11] 曹威,党志. 季铵化改性稻草吸附去除水中SO2-4的特性研究[J]. 环境科学学报,2013,33(9):2466-2472.Cao W, Dang Z.Adsorption of sulphate from aqueous solution by quaternary amine-modified rice straw[J].Acta Scientiae Circumstantiae,2013,33(9):2466-2472.
[12] 张广志,黄丹,蒋学.乙酰化稻草/聚己内酯接枝共聚物的合成及表征[J]. 高分子通报,2013(3):71-77.Zhang G Z, Huang D, Jiang X.Synthesis and characteristics of graft copolymer of ε-caprolactone onto acetylated rice straw[J].Polymer Bulletin,2013(3):71-77.
[13] 黄丽君,叶菊娣,徐诚,等.改进的高沸醇溶剂法分离稻草中木质素的研究[J].南京林业大学学报:自然科学版,2010,34(2):104-106.Huang L J,Ye J D,Xu C,et al.Separation of lignin from rice straw by modified method of HBS[J]. Journal of Nanjing Forestry University:Natural Sciences Edition,2010,34(2):104-106.
[14] Li H Y, Jin M, Huang K L, et al. Impacts of the combined pretreatment using NaOH and Ozone on enzymatic hydrolysis and morphology of rice straw[J]. Asian Journal of Chemistry, 2013, 25(5): 2816-2820.
[15] Schmidt M, Wittmann J J, Kress R, et al. Probing self-assembled 1,3,5-benzenetrisamides in isotactic polypropylene by 13C DQ solid-state NMR spectroscopy[J]. Chemical Communications, 2013, 49(3): 267-269.
[16] Song Y B, Gan W P, Li Q, et al. Alkaline hydrolysis and flocculation properties of acrylamide-modified cellulose polyelectrolytes[J]. Carbohydrate Polymers, 2011, 86(1):171-176.
[17] Sun S L, Wen J L, Ma M G, et al. Revealing the structural inhomogeneity of lignins from sweet sorghum stem by successive alkali extractions[J]. Journal of Agricultural and Food Chemistry, 2013, 61(8):4226-4235.
[18] El-Gamel N E A, Brand J,Kroke E. Synthesis, spectroscopic characterization, and X-ray crystal structure of tris(trimethylsilyl)cyanurate[J].Journal of Coordination Chemistry, 2009, 62(8): 1278-1284.
[19] Borysiak S. Fundamental studies on lignocellulose/polypropylene composites: Effects of wood treatment on the transcrystalline morphology and mechanical properties[J]. Journal of Applied Polymer Science, 2013, 127(2):1309-1322.
[20] Maurer R J, Sax A F, Ribitsch V. Moleular simulation of surface reorganization and wetting in crystalline cellulose I and II[J]. Cellulose, 2013, 20(1):25-42.
基金
收稿日期:2013-10-08 修回日期:2014-06-24
基金项目:国家自然科学基金项目(31270632); 中国博士后科学基金面上项目(2013M540413)
第一作者:刘琳,硕士生。*通信作者:蒋学,副教授。E-mail: jiangx@jiangnan.edu.cn。
引文格式:刘琳,田秀枝,谢玲玲,等. 三聚氯氰改性对稻草结构及其水解性能的影响[J]. 南京林业大学学报:自然科学版,2015,39(1):114-118.