地铁过江隧道大型泥水盾构的水中接收技术

贲志江,杨平,陈长江,王升福

南京林业大学学报(自然科学版) ›› 2015, Vol. 39 ›› Issue (01) : 119-124.

PDF(1754421 KB)
PDF(1754421 KB)
南京林业大学学报(自然科学版) ›› 2015, Vol. 39 ›› Issue (01) : 119-124. DOI: 10.3969/j.issn.1000-2006.2015.01.022
研究论文

地铁过江隧道大型泥水盾构的水中接收技术

  • 贲志江1,杨 平1*,陈长江2,王升福1
作者信息 +

Water receiving technology of large slurry shield in river-crossing subway tunnel

  • BEN Zhijiang1, YANG Ping1*, CHEN Changjiang2, WANG Shengfu1
Author information +
文章历史 +

摘要

针对南京地铁10号线过江隧道大直径泥水盾构接收端头为富水砂性土层这一不良地质条件,比选出最适宜的加固方式:水泥土三轴搅拌桩+高压旋喷桩+垂直冷冻固结。分析了大型泥水盾构水中接收的施工关键技术,采用工程应用与实测相结合的综合研究方法对垂直冻结施工及盾构接收期间地表沉降进行了现场实测研究,分析了垂直冻土墙的温度变化规律。接收端头地表沉降结果显示:盾构接收段加固区域内地表沉降≤4.6 mm,地基加固处理效果较好。采用水中接收技术能够保障富水砂层大盾构的安全接收。

Abstract

The large diameter slurry shield receiving end of Nanjing subway river-crossing tunnel in subway line No. 10 is water-rich sandy soil. The most appropriate way of reinforcement for the poor geological conditions were selected as follows: cement mixing pile-triaxial pressure rotary freezing spray pile-vertical consolidation, and the key technology and main points of large slurry shield water receiving were analyzed and summarized. The surface subsidence of the vertical frozen shield construction during receiving was investigated in situ test by adopting the combination of engineering application and actual research methods, and the vertical development rule of the temperature of the frozen soil wall was analyzed for judging whether the vertical frozen soil wall thickness and average temperature meet the requirements of shield to receive, and the time of getting rid portal was determined. Receiving end surface subsidence results showed that the land surface subsidence of the strengthening regional for the shield receiving is less than 4.6 mm, and we can draw a conclusion that the effect of the foundation reinforcement treatment is good. The water receiving technology can guarantee the rich sand layer security to receive large shield, and can provide important technical reference for future similar large shield receiving by this project research.

引用本文

导出引用
贲志江,杨平,陈长江,王升福. 地铁过江隧道大型泥水盾构的水中接收技术[J]. 南京林业大学学报(自然科学版). 2015, 39(01): 119-124 https://doi.org/10.3969/j.issn.1000-2006.2015.01.022
BEN Zhijiang, YANG Ping, CHEN Changjiang, WANG Shengfu. Water receiving technology of large slurry shield in river-crossing subway tunnel[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2015, 39(01): 119-124 https://doi.org/10.3969/j.issn.1000-2006.2015.01.022
中图分类号: TU2   

参考文献

[1] 王杰,杨平,张翔宇,等.水平冻结水泥土加固盾构洞门温度敏感性分析[J].南京林业大学学报:自然科学版,2013,37(2):43-45.Wang J, Yang P, Zhang X Y, et al. Level reinforced cement soil freezing temperature sensitivity analysis shield portal [J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2013,37(2):43-45.
[2] 袁云辉,杨平,王海波.人工水平冻结帷幕强制解冻温度场数值分析[J]. 南京林业大学学报:自然科学版,2011,35(3):22-26. Yuan Y H, Yang P, Wang H B. Artificial level thaw frozen curtain mandatory temperature field numerical analysis [J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2011,35(3):22-26.
[3] 赵峻,戴海蛟.盾构法隧道软土地层盾构进出洞施工技术[J].岩石力学与工程学报,2004(1):68-70. Zhao J, Dai H J. Shield tunnel in soft soil layer shield construction technology out of the hole [J]. Rock Mechanics and Engineering, 2004(1):68-70.
[4] 赵峻.盾构进出洞施工关键技术施工技术[J]. 施工技术,2008(2):101-105.Zhao J. Shield tunnel construction out of key construction technology[J]. Construction Technology, 2008(2):101-105.
[5] 鲍永亮,郑七振,唐建忠.上海软土地层盾构始发施工技术[J].铁道工程学报,2010(3):118-122. Bao Y L, Zheng Q Z, Tang J Z. Shield construction technology originating Shanghai soft soil [J]. Railway Engineering Society,2010(3):118-122.
[6] 刘玉林,刘天祥. 富水砂层地质条件下盾构接收技术[J]. 施工技术,2012(6):9-12. Liu Y L,Liu T X. Geological conditions of water-rich sand shield receiver technology[J]. Construction Technology, 2012(6):9-12.
[7] 胡俊.苏州地铁盾构隧道端头加固方式及其关键问题研究[D].南京:南京林业大学,2009. Hu J. Suzhou metro shield tunnel ends reinforcement approach and its keyissues[D].Nanjing:Nanjing Forestry University,2009.
[8] 焦齐柱.盾构直接切削围护墙的设计探讨[J].现代隧道技术,2007(2):66-75. Jiao Q Z. Column shield directly cutting the design of enclosure wall[J]. Modern Tunnelling Technology,2007(2):66-75.
[9] 李飞,凌波.盾构到达接收辅助装置的设计[J].建筑机械化,2009(9):66-68. Li F. Lin B. Shield designed to reach the receiver auxiliary devices [J]. Construction Mechanization,2009(9):66-68.
[10] 方俊.越江隧道工程盾构进洞施工风险控制[J].地下空间与工程学报,2013(2):33-45. Fang J. Cross-river tunnel construction project risk control shield hole [J]. Underground Space and Engineering,2013(2):33-45.
[11] 胡俊.高水压砂性土层地铁大直径盾构始发端头加固方式研究[D].南京:南京林业大学,2012.Hu J. Sandy soil high water pressure underground large diameter shield originating ends of reinforcing way [D]. Nanjing: Nanjing Forestry University, 2012.
[12] Zeng H, Hu J,Yang P. A Numerical Simulation Study on the Chemical Reinforcement Areaat Shield StartShaft[C]//2011 International Conference on Electric Technology and Civil Engineering(ICETCE),IEEE, 2011.
[13] 邢慧堂.超大型泥水盾构水中接收施工技术[J].铁道建筑,2010,8(1):449-452.Xing H T. Receiving large water slurry shield construction technology [J]. Railway Construction, 2010,8(1):449-452.
[14] 杨纪彦.超大型泥水盾构到达施工技术[J].隧道建设,2009,10(5):72-76.Yang J Y. Reach large slurry shield construction technology [J]. Tunnel Construction, 2009,10(5):72-76.

基金

收稿日期:2014-01-02 修回日期:2014-05-19
基金项目:江苏省普通高校研究生科研创新计划项目(CXLX13-51); 江苏高校优势学科建设工程资助项目(PAPD); 南京地下铁道有限公司科研项目(D3-XY01-0001-1206)
第一作者:贲志江,硕士生。*通信作者:杨平,教授。E-mail: yangping@njfu.edu.cn。
引文格式:贲志江,杨平,陈长江,等. 地铁过江隧道大型泥水盾构的水中接收技术[J]. 南京林业大学学报:自然科学版,

PDF(1754421 KB)

Accesses

Citation

Detail

段落导航
相关文章

/