全基因组预测樟疫霉的候选效应分子

韩长志

南京林业大学学报(自然科学版) ›› 2015, Vol. 39 ›› Issue (02) : 69-74.

PDF(1797447 KB)
PDF(1797447 KB)
南京林业大学学报(自然科学版) ›› 2015, Vol. 39 ›› Issue (02) : 69-74. DOI: 10.3969/j.issn.1000-2006.2015.02.012
研究论文

全基因组预测樟疫霉的候选效应分子

  • 韩长志
作者信息 +

Prediction for candidate effector proteins from Phytophthora cinnamomi genome

  • HAN Changzhi
Author information +
文章历史 +

摘要

为了更好地研究樟疫霉的致病机制及防治方法,笔者基于病原菌效应分子具有的典型特征,利用SignalP、ProtComp、TMHMM、big-PI Fungal Predictor和TargetP等生物信息学预测程序对樟疫霉中328 457条蛋白质序列进行候选效应分子找寻,发现该菌含有3 439个小分子分泌蛋白,同时,对上述蛋白进行冗余性、半胱氨酸数量以及信号肽长度等性质进行分析。结果表明:上述分泌蛋白中存在较多的冗余性蛋白,所占比例为50%以上,并以含有1~10个半胱氨酸、17~26个氨基酸信号肽的分泌蛋白居多。另外,利用卵菌中效应分子所具有的保守基序RXLR,对拥有唯一氨基酸序列的1 549个分泌蛋白进行基序找寻,明确樟疫霉中存在160个候选效应分子。通过上述生物信息学分析方法可实现樟疫霉候选效应分子的预测。

Abstract

Phytophthora cinnamomi can devastate the important food crops and lauraceae plants, and cause serious harm in many countries. To study the pathogenesis and prevention methods of Ph. cinnamomi, based on the typical character of the pathogen effector, candidate effector proteins were predicted from 328 457 proteins in Ph. cinnamomi using the prediction programs including SignalP, ProtComp, TMHMM, big-PI Fungal Predictor and TargetP. The results showed that 3 439 secreted proteins were found with the 50-300 aa in length of amino acids, and the number of cysteine-rich and the length of the signal peptide were analyzed. The results showed that there were many redundant proteins in 3 439 secreted proteins, the proportion was up to 50%, and containing 1 to 10 cysteine, and the signal peptide length was 17 to 26. Further, based on the conserved motif RXLR in the effector of oomycetes, 160 candidate effector proteins were identified from 1 549 secreted proteins with a unique amino acid sequence. Above bioinformatics analysis method could effectively achieve the candidate effector proteins in Ph. cinnamomi, which provided an important theoretical basis to further clarify the function of effectors.

引用本文

导出引用
韩长志. 全基因组预测樟疫霉的候选效应分子[J]. 南京林业大学学报(自然科学版). 2015, 39(02): 69-74 https://doi.org/10.3969/j.issn.1000-2006.2015.02.012
HAN Changzhi. Prediction for candidate effector proteins from Phytophthora cinnamomi genome[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2015, 39(02): 69-74 https://doi.org/10.3969/j.issn.1000-2006.2015.02.012
中图分类号: S763   

参考文献

[1] Jiang R H, Tripathy S, Govers F, et al. RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members[J]. Proc Natl Acad Sci U S A, 2008, 105(12): 4874-4879.
[2] 韩长志. 大豆疫霉效应分子的功能研究[D]. 南京: 南京农业大学, 2010.Han C Z. Study on the function of effectors in Phytophthora sojae[D]. Nanjing: Nanjing Agricultural University, 2010.
[3] 韩长志. 植物病原卵菌RxLR效应基因功能研究进展[J]. 北方园艺, 2014(5): 188-193.Han C Z. Research advance on functional effect of gene plant pathogenic oomycete[J]. Northern Horticulture, 2014(5):188-193.
[4] 张红生, 吴云雨, 鲍永美. 水稻与稻瘟病菌互作机制研究进展[J]. 南京农业大学学报, 2012, 35(5): 1-8.Zhang H S, Wu Y Y, Bao Y M. Advances on the mechanism of interaction between rice and blast fungus[J]. Journal of Nanjing Agricultural University, 2012, 35(5): 1-8.
[5] Van De Wouw A P, Howlett B J. Fungal pathogenicity genes in the age of ‘omics’[J]. Molecular Plant Pathology, 2011, 12(5): 507-514.
[6] 陈继圣, 郑士琴, 郑武, 等. 全基因组预测稻瘟菌的分泌蛋白[J]. 中国农业科学, 2006, 39(12): 2474-2482.Chen J S, Zheng S Q, Zheng W, et al.Prediction for secreted proteins from Magnaporthe grisea genome[J]. Scientia Agricultura Sinica, 2006, 39(12): 2474-2482.
[7] 杨静, 李成云, 王云月, 等. 酿酒酵母分泌蛋白组的计算机分析[J]. 中国农业科学, 2005, 38(3): 516-522.Yang J, Li C Y, Wang Y Y, et al.Computational analysis of signal peptide-dependent secreted proteins in Saccaromyces cerevisiae[J]. Scientia Agricultura Sinica, 2005, 38(3): 516-522.
[8] 范成明, 李成云, 赵明富, 等. 根癌土壤杆菌C58 Cereon中分泌蛋白信号肽分析[J]. 微生物学报, 2005, 45(4):561-566.Fan C M, Li C Y, Zhao M F, et al. Analysis of signal peptides of the secreted proteins in Agrobacterium tumefaciens C58[J]. Acta Microbiologica Sinica, 2005, 45(4): 561-566.
[9] 于钦亮, 马莉, 刘林, 等. 禾谷镰刀菌基因组中含寄主靶向模体分泌蛋白功能的初步分析[J]. 生物技术通报, 2008(1): 160-165, 180.Yu Q L, Ma L, Liu L, et al. Primary analysis of host-targeting-motif harbored secreted proteins in genome of Fusarium graminearum[J]. Biotechnology Bulletin, 2008(1): 160-165, 180.
[10] 周晓罡, 李成云, 赵之伟, 等. 粗糙脉孢菌基因组分泌蛋白的初步分析[J]. 遗传, 2006, 28(2): 200-207.Zhou X G, Li C Y, Zhao Z W, et al.Analysis of the secreted proteins encoded by genes in genoma of filamental fungus(Neurospora crassa)[J]. Hereditas, 2006, 28(2): 200-207.
[11] 田李, 陈捷胤, 陈相永, 等. 大丽轮枝菌(Verticillium dahliae VdLs.17)分泌组预测及分析[J]. 中国农业科学, 2011, 44(15): 3142-3153.Tian L, Chen J Y, Chen X Y, et al. Prediction and analysis of Verticillium dahliae VdLs.17 secretome[J]. Scientia Agricultura Sinica, 2011, 44(15): 3142-3153.
[12] 周晓罡, 侯思名, 陈铎文, 等. 马铃薯晚疫病菌全基因组分泌蛋白的初步分析[J]. 遗传, 2011, 33(7): 125-133.Zhou X G, Hou S M, Chen D W, et al.Genome-wide analysis of the secreted proteins of Phytophthora infestans[J]. Hereditas, 2011, 33(7): 125-133.
[13] 任楠, 李俊星, 沈徐凯. 米曲霉分泌组的预测及分析[J]. 安徽农业科学, 2010, 38(25): 13622-13625.Ren N, Li J X, Shen X K. Prediction and analysis of secretome in Aspergillus oryzae[J]. Journal of Anhui Agri Sci, 2010, 38(25): 13622-13625.
[14] 韩长志. 全基因组预测禾谷炭疽菌的分泌蛋白[J]. 生物技术, 2014, 24(2): 36-41.Han C Z. Prediction for secreted proteins from Colletotrichum graminicola genome[J]. Biotechnology, 2014, 24(2): 36-41.
[15] 曹友志, 谭碧玥, 王明庥, 等. 利用杨树原生质体瞬时表达系统筛选杨生褐盘二孢菌效应因子蛋白[J]. 南京林业大学学报:自然科学版, 2012, 36(5): 31-36.Cao Y Z, Tan B Y, Wang M X, et al. Identification of Marssonina brunnea f. sp. multigermtubi effector proteins using poplar protoplast transient expression system[J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2012, 36(5):31-36.
[16] Win J, Morgan W, Bos J, et al. Adaptive evolution has targeted the C-terminal domain of the RXLR effectors of plant pathogenic oomycetes[J]. The Plant Cell Online, 2007, 19(8):2349-2369.
[17] Anderson P, Brundrett M, Grierson P, et al. Impact of severe forest dieback caused by Phytophthora cinnamomi on macrofungal diversity in the northern jarrah forest of Western Australia[J]. Forest Ecology and Management, 2010, 259(5): 1033-1040.
[18] Hardham A R. Phytophthora cinnamomi[J]. Molecular Plant Pathology, 2005, 6(6): 589-604.
[19] 韩长志. 樟疫霉(Phytophthora cinnamomi)的研究进展[J]. 南京林业大学学报:自然科学版, 2011, 35(4): 140-144.Han C Z.Research progress on Phytophthora cinnamomi[J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2011, 35(4): 140-144.
[20] McDonald A E, Niere J O, Plaxton W C. Phosphite disrupts the acclimation of Saccharomyces cerevisiae to phosphate starvation[J]. Canadian Journal of Microbiology, 2001, 47(11):969-978.
[21] Bendtsen J D, Nielsen H, van Heijne G, et al. Improved prediction of signal peptides: SignalP 3.0[J]. Journal of Molecular Biology, 2004, 340(4): 783-795.
[22] Emanuelsson O, Nielsen H, Brunak S, et al. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence[J]. Journal of Molecular Biology, 2000, 300(4): 1005-1016.
[23] Krogh A, Larsson B, Von Heijne G, et al. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes[J]. Journal of Molecular Biology, 2001, 305(3): 567-580.
[24] Eisenhaber B, Schneider G, Wildpaner M, et al. A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to Genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe[J]. Journal of Molecular Biology, 2004, 337(2): 243-253.
[25] Emanuelsson O, Brunak S, von Heijne G, et al. Locating proteins in the cell using TargetP, SignalP and related tools[J]. Nature Protocols, 2007, 2(4): 953-971.
[26] Yoshida K, Saitoh H, Fujisawa S, et al. Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae[J]. The Plant Cell Online, 2009, 21(5): 1573-1591.
[27] 张幸. 稻瘟病菌LXAR效应分子的筛选及功能研究[D]. 南京: 南京农业大学, 2010.Zhang X. Screening and functional study of Magnaporthe oryzae LXAR effectors[D]. Nanjing: Nanjing Agricultural University, 2010.
[28] Kale S D, Gu B, Capelluto D G, et al. External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells[J]. Cell, 2010, 142(2): 284-295.
[29] Wang Q, Han C, Ferreira A O, et al. Transcriptional programming and functional interactions within the Phytophthora sojae RXLR effector repertoire[J]. Plant Cell, 2011, 23(6): 2064-2086.
[30] 王群青. RxLR效应分子协同互作控制大豆疫霉对寄主侵染过程[D]. 南京: 南京农业大学, 2011.Wang Q Q. Phytophthora sojae controls the infection process by cooperation and functional interactions within RXLR effectors repertoire[D]. Nanjing: Nanjing Agricultural University, 2011.
[31] Birch P R, Boevink P C, Gilroy E M, et al. Oomycete RXLR effectors: delivery, functional redundancy and durable disease resistance[J]. Current Opinion in Plant Biology, 2008, 11(4): 373-379.

基金

收稿日期:2014-04-14 修回日期:2014-11-28
基金项目:云南省优势特色重点学科生物学一级学科建设项目(50097505); 云南省高校林下生物资源保护及利用科技创新团队项目(2014015); 云南省教育厅科学研究基金项目(2014Y330); 西南林业大学校级科研专项项目(111117)
第一作者:韩长志,讲师,博士。E-mail:hanchangzhi2010@163.com。
引文格式:韩长志. 全基因组预测樟疫霉的候选效应分子[J]. 南京林业大学学报:自然科学版,2015,39(2):69-74.

PDF(1797447 KB)

Accesses

Citation

Detail

段落导航
相关文章

/