南京林业大学学报(自然科学版) ›› 2015, Vol. 39 ›› Issue (03): 13-17.doi: 10.3969/j.issn.1000-2006.2015.03.003

• 专题报道 • 上一篇    下一篇

高分辨率遥感图像森林训练样本自动提取及其在变化检测中的应用

张连华,李春干   

  1. 广西林业勘测设计院,广西 南宁 530011
  • 出版日期:2015-05-30 发布日期:2015-05-30
  • 基金资助:
    收稿日期:2014-02-26 修回日期:2014-06-02
    基金项目:广西林业科技项目(201423); 国土资源公益性行业科研专项项目(201211028-6)
    第一作者:张连华,工程师,硕士。E-mail:sdzhanglh@126.com。
    引文格式:张连华,李春干. 高分辨率遥感图像森林训练样本自动提取及其在变化检测中的应用[J]. 南京林业大学学报:自然科学版,2015,39(3):13-17.

Automatic extraction of forest training sample and their application in change detection using high resolution remote sensing image

ZHANG Lianhua, LI Chungan   

  1. Guangxi Forest Inventory and Planning Institute, Nanning 530011,China
  • Online:2015-05-30 Published:2015-05-30

摘要: 森林训练样本自动提取算法(TDA)已在Landsat图像分析中得到了成功应用,笔者以广西苍梧县广平镇为研究区,采用2007年ALOS、2011年RapidEye遥感图像,试验该算法在高分辨率图像中的应用。研究首先根据图像光谱特性自动识别出纯净森林训练样本,然后依据归一化的整合森林指数图像提取两期森林/非森林分类结果并以此进行林地变化检测,经过精度分析结果表明,面积总误差为-2.6%,空间位置精度为87.7%,说明该算法可有效地从高分辨率遥感图像提取出纯净的森林训练样本,为森林/非森林分类以及变化检测提供基础数据。

Abstract: The algorithm of forest training data automation(TDA)has been successfully applied to Landsat images. Taking Guangping Town, Cangwu County, Guangxi Province as the study area, we selected the ALOS image of 2007 and the RapidEye image of 2011 to explore the algorithm’s application in high resolution remote sensing images. The pure forest training samples were automatically identifed at first, and the change detection result was then obtained by the forest/non-forest classification which extracted by the normalized integrated forest index image involved in the anlaysis.The accurate evaluation results showed that the total area error was -2.6% and the spatial location accuracy was 87.7%. It was shown that this algorithm could be effectively applied to high resolution remote sensing images to extract pure forest training samples for the forest/non-forest classification and change detection as the original data.

中图分类号: