使用大豆蛋白与纳米纤维素制备复合材料,研究了乙二醇添加剂对两组分相容性的影响; 通过红外光谱分析和热分析,阐明了乙二醇提高复合体系中两组分相容性的机理。研究表明:对于纯大豆蛋白,热压导致羟基与蛋白质上的酰胺Ⅰ带的红外吸收峰分别由3 420 cm-1和1 641 cm-1红移至3 272 cm-1和1 626 cm-1,说明乙二醇与大豆蛋白酰胺键之间形成了氢键相互作用; 纳米纤维素的加入增强了氢键缔合,使酰胺Ⅰ带发生进一步微弱红移; 热分析研究发现,纳米纤维素的加入提高了乙二醇/水的气化温度,表明它们参与了氢键的形成过程; 同时认为,乙二醇以氢键的形式连接了大豆蛋白与纳米纤维素,从而提高了两组分之间的相容性。
Abstract
This study mainly focused on the composites of the soy protein and nanocellulose, especially on the effect of ethylene glycol as an additive on the compatibility of the composites. By using infrared spectra and thermal analysis, the mechanism of the improved compatibility by ethylene glycol was analyzed. The results revealed that the hydrogen bonding formed between hydroxyl on ethylene glycol and amide Ⅰ on soy protein, indicated by the red shift of hydroxyl and amide Ⅰ from 3 420 cm-1 and 1 641 cm-1 to 3 272 cm-1 and 1 626 cm-1 after hot pressing, respectively. Further more, slight red-shifted amide Ⅰ indicated an enhanced hydrogen bonding after addition of nanocellulose. The thermal analysis revealed that boiling points of water and ethlylene glycol were elevated in presence of nanocellulose, and it also indicated that the small molecules helped the formation of hydrogen bonding. Finally, a mechanism was proposed that the ethylene glycol acts as a“bridge” between the soy protein and nanocellulose by hydrogen bonding, which makes the two components compatible with each other.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张恒翔, 蔡建, 邱莎莎. 功能高分子材料在军用包装中的应用[J]. 包装工程, 2011, 32(23):60-62.
Zhang H X, Cai J, Qiu S S. Application of functional high molecular material in military packaging[J]. Packaging Engineering, 2011, 32(23): 60-62.
[2] 石路晶, 贾长明. 导热高分子材料在电子封装领域应用研究[J]. 包装工程, 2014, 35(17): 127-134.
Shi L J, Jia C M. Research advances in application of thermally conductive polymer material in electronic packaging[J]. Packaging Engineering, 2014, 35(17): 127-134.
[3] 汪广恒,周安宁.大豆蛋白复合材料的研究进展[J]. 塑料工业, 2005, 33(2): 1-3.
Wang G H, Zhou A N. Advance in study of soy protein composite[J]. China Plastic Industry, 2005, 33(2): 1-3.
[4] Netravali A N, Huang X, Mizuta K. Advanced ‘green' composites[J]. Advanced composite Materials, 2007, 16(4):269-282.
[5] Shao C, Yang C, Wang X, et al. Characterization of soy protein-celery composite paper sheet: Rheological behavior, mechanical, and heat-sealing properties[J]. Journal of Applical Polymer Science, 2012, 125(S2): E255-E261.
[6] Atares L, De Jesus C, Talens P, et al. Characterization of SPI-based edible films incorporated with cinnamon or ginger essential oils[J]. Journal of Food Engineering, 2010, 99(3): 384-391.
[7] Tian H F, Zhang L N, Wu Q X, et al. Creation of hydrophobic materials fabricated from soy protein and natural rubber: surface, interface, and properties[J]. Macromolecular Materials and Engineering, 2010, 295(5): 451-459.
[8] Sue H J, Wang S, Jane J L. Morphology and mechanical behaviour of engineering soy plastics[J]. Polymer, 1997, 38(20): 5035-5040.
[9] Zhang M, Song F, Wang X L, et al. Development of soy protein isolate/waterborne polyurethane blend films with improved properties[J]. Colloid Surf B-Biointerfaces, 2012, 100:16-21.
[10] Liu B, Jiang L, Liu H Z, et al. Different effects of water and glycerol on morphology and properties of poly(lactic acid)/ soy protein concentrate blends[J]. Macromolecular Materials and Engineering, 2010, 295(2): 123-129.
[11] Cho D, Nnadi O, Netravali A, et al. Electrospun hybrid soy protein/PVA fibers[J]. Macromolecular Materials and Engeering, 2010, 295(8): 763-773.
[12] John J, Bhattacharya M. Properties of reactively blended soy protein and modified polyesters[J]. Polymer International, 1999, 48(11): 1165-1172.
[13] Huang X S, Netravali A. Biodegradable green composites made using bamboo micro/nano-fibrils and chemically modified soy protein resin[J]. Composites Science and Technology, 2009, 69(7-8): 1009-1015.
[14] Lee J E, Kim K M. Characteristics of soy protein isolate-montmorillonite composite films[J]. Journal of Applied Polymer Science, 2010, 118(4): 2257-2263.
[15] Wang X M, Chang P R, Li Z H, et al. Chitosan-coated cellulose/soy protein mebranes with improved physical properties and hemocompatibility[J]. BioResources, 2011, 6(2): 1392-1413.
[16] Wang Y X, Cao X D, Zhang L N. Effects of cellulose whiskers on properties of soy protein thermoplastics[J]. Macromoleculor Bioscience, 2006, 6(7): 524-531.
[17] Su J F, Huang Z, Yuan X Y, et al. Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films crosslinked by Maillard reactions[J]. Carbohydrate Polymers, 2010, 79(1): 145-153.
[18] Chen Y, Zhang L N. Blend membranes prepared from cellulose and soy protein isolate in NaOH/thiourea aqueous solution[J]. Journal of Applied Polymer Science, 2004, 94(2): 748-757.
[19] Wu R L, Wang X L, Wang Y Z, et al. Cellulose/soy protein isolate blend films prepared via room-temperature ionic liquid[J]. Industrial and Engineering Chemistry Research, 2009, 48(15): 7132-7136.
[20] Pan M Z, Zhou X Y, Chen M Z. Cellulose nanowhiskers isolation and properties from acid hydrolysis combined with high pressure homogenization[J]. BioResources, 2013, 8(1): 933-943.
[21] Chen M, Chen Y, Zhou X, et al. Improving water resistance of soy-protein wood adhesive by using hydrophilic additives[J]. BioResources, 2015, 10(1): 41-54.
[22] Zhao L, Tang G W, Su J F, et al. Electrospinning of soy protein isolate/poly(vinyl alcohol)[J]. Chemical Journal of Chinese Universities-Chinese, 2010, 31(4): 811-814.
[23] Nie H, He A, Zheng J, et al. Effects of chain conformation and entanglement on the electrospinning of pure alginate[J]. Biomacromolecules, 2008, 9(5): 1362-1365.
[24] Gao Y, Yu C H, Chen M Z, et al. Thermo-reversible gelation of atactic poly(methyl methacrylate)in poly(ethylene glycol)oligomers[J]. European Physical Journal: E, 2013, 36(4): 37-42.
基金
收稿日期:2015-04-17 修回日期:2015-06-26
基金项目:国家自然科学基金项目(31400515); 江苏省“青蓝工程”(科技创新团队)项目; 江苏高校优势学科建设工程资助项目(PAPD)
第一作者:陈敏智,讲师,博士。*通信作者:周晓燕,教授。E-mail:zhouxiaoyan@njfu.edu.cn。
引文格式:陈敏智,陈燕,周晓燕. 乙二醇提高大豆蛋白/纳米纤维素复合材料相容性的研究[J]. 南京林业大学学报:自然科学版,2015,39(6):143-147.