南京林业大学学报(自然科学版) ›› 2015, Vol. 39 ›› Issue (06): 155-162.doi: 10.3969/j.issn.1000-2006.2015.06.027

• 综合述评 • 上一篇    下一篇

QCM-D应用于纤维素酶水解分析中的研究进展

谈 旭,金永灿*   

  1. 江苏省制浆造纸科学与技术重点实验室,南京林业大学轻工科学与工程学院,江苏 南京 210037
  • 出版日期:2015-11-30 发布日期:2015-11-30
  • 基金资助:
    收稿日期:2014-10-10 修回日期:2015-05-18
    基金项目:国家自然科学基金项目(31370571); 高等学校博士学科点专项科研基金项目(20133204110006); 江苏省自然科学基金项目(BK20141473); 江苏高校优势学科建设工程资助项目(PAPD)
    第一作者:谈旭,硕士。*通信作者:金永灿,教授。E-mail: jinyongcan@njfu.edu.cn。
    引文格式:谈旭,金永灿. QCM-D应用于纤维素酶水解分析中的研究进展[J]. 南京林业大学学报:自然科学版,2015,39(6):155-162.

The application and development of QCM-D in the research on enzymatic hydrolysis of cellulose

TAN Xu, JIN Yongcan*   

  1. Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
  • Online:2015-11-30 Published:2015-11-30

摘要: 酶水解包含酶的吸附、解吸及其对纤维素的降解过程,是纤维素生物转化的重要途径。耗散型石英晶体微天平(QCM-D)是基于石英的压电特性制备的一种表面敏感型分析技术,能感应到纳克级的质量变化。不同于传统的化学方法,QCM-D可实时反映其动态过程及动力学特征。笔者概述了QCM-D的原理、生物传感器的成熟制备方式及其在纤维素酶水解方面的应用研究成果。分析认为,通过QCM-D在线测定酶水解过程中频率和能量耗散变化,可原位、实时响应水解底物表面的质量变化,直观地反映纤维素酶在底物上的吸附、解吸,以及纤维素酶水解的动态过程。由QCM-D呈现的频率和耗散间的关系还可间接获得吸附层的结构信息。但QCM-D用于酶水解时也存在一定的局限性,这一方法对底物的成膜性要求较高,在定量分析方面也有待深入研究。

Abstract: The adsorption and desorption of enzymes on the substrates are critical for bioconversion of cellulosic materials. QCM-D(quartz crystal microbalance with dissipation), different from traditional chemical analysis methods, could reflect the whole dynamic process and the features of kinetics of enzymatic hydrolysis online. QCM-D was a surface-sensitive analytical technique based on the piezoelectric properties of quartz crystal and could sense the mass change in nanoscale. In this review, the operating principle of QCM-D and the preparation methods of the biosensor, as well as the latest developments of the application of QCM-D on the research of enzymatic hydrolysis of cellulosic materials were introduced. Generally, QCM-D gives the information in situ and responses to the surface quality changes on the substrates on top of quartz crystal in real-time through the variations of frequency and dissipation. Thus the adsorption and desorption of enzymes on the substrate, and the dynamic enzymatic hydrolysis could be visually monitored and analyzed. In addition, the relationships between frequency and dissipation obtained from QCM-D reflect the structure information of adsorbed layers. However, there still were part of limitations in enzymatic hydrolysis process. For instance, relatively high demands of film-formation of substrates were needed when using QCM-D. Besides, further researches were required in the aspect of quantitative analysis.

中图分类号: