[1] Van Dyk J S, Pletschke B I. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-factors affecting enzymes, conversion and synergy[J]. Biotechnology Advances, 2012, 30(6):1458-1480.
[2] Henrissat B. Cellulases and their interaction with cellulose[J]. Cellulose, 1994, 1(3): 169-196.
[3] Martín-Sampedro R, Rahikainen J L, Johansson L-S, et al. Preferential adsorption and activity of monocomponent cellulases on lignocellulose thin films with varying lignin content[J]. Biomacromolecules, 2013, 14: 1231-1239.
[4] Chernoglazov V M, Ermolova O V, Klyosov A. Adsorption of high-purity endo-1,4-β-glucanases from Trichoderma reesei on components of lignocellulosic materials: cellulose lignin and xylan[J]. Enzyme and Microbial Technology, 1988, 10(8): 503-507.
[5] Liu H, Zhu J Y, Chai X S. In situ, rapid and temporally resolved measurements of cellulase adsorption onto lignocellulosic substrates by UV-vis spectrophotometry[J]. Langmuir, 2011, 27(1): 272-278.
[6] Igarashi K, Uchihashi T, Koivula A,et al. Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface[J]. Science, 2011, 333(6047): 1279-1282.
[7] Suchy M, Linder M B, Tammelin T, et al. Quantitative assessment of the enzymatic degradation of amorphous cellulose by using a quartz crystal microbalance with dissipation monitoring[J]. Langmuir, 2011, 27(14): 8819-8828.
[8] Maurer S A, Bedbrook C N, Radke C J. Cellulase adsorption and reactivity on a cellulose surface from flow ellipsometry[J]. Industrial and Engineering Chemistry Research, 2012, 51(35): 11389-11400.
[9] Cheng G, Datta S, Liu Z,et al. Interactions of endoglucanases with amorphous cellulose films resolved by neutron reflectometry and quartz crystal microbalance with dissipation monitoring[J]. Langmuir, 2012, 28(22): 8348-8358.
[10] Ma A Z, Hu Q, Qu Y B, et al. The enzymatic hydrolysis rate of cellulose decreases with irreversible adsorption of cellobiohydrolase I[J]. Enzyme and Microbial Technology, 2008, 42(7): 543-547.
[11] Ding S Y, Liu Y S, Zeng Y N,et al. How does plant cell wall nanoscale architecture correlate with enzymatic digestibility?[J] Science, 2012, 338(6110): 1055-1060.
[12] Valasek J. Piezoelectric and allied phenomena in Rochelle Salt[J]. Phys Rev, 1921,17(4):475.
[13] Nomura T, Okuhara M. Frequency shifts of piezoelectric quartz crystals immersed in organic liquids[J]. Analytica Chimica Acta, 1982, 142: 281-284.
[14] Kurosawa S, Tawara E, Kamo N,et al. Oscillating frequency of piezoelectric quartz crystal in solution[J]. Analytica Chimica Acta, 1990, 230(1): 41-49.
[15] Tammelin T, Merta J, Johansson L-S, et al. Viscoelastic properties of cationic starch adsorbed on quartz studied by QCM-D[J]. Langmuir, 2005, 20(25): 10900-10909.
[16] Kontturi K S, Tammelin T, Johansson L S,et al. Adsorption of cationic starch on cellulose studied by QCM-D[J]. Langmuir, 2008, 24(9): 4743-4749.
[17] Halthur T J, Björklund A, Elofsson U M. Self-assembly/aggregation behavior and adsorption of enamel matrix derivate protein to silica surfaces[J]. Langmuir, 2006, 22(5): 2227-2234.
[18] Malmström J, Agheli H, Kingshott P,et al. Viscoelastic modeling of highly hydrated laminin layers at homogeneous and nanostructured surfaces: quantification of protein layer properties using QCM-D and SPR[J]. Langmuir, 2007, 23(19): 9760-9768.
[19] 马少玲,陆兆文,吴有庭,等. 石英晶体微天平(QCM)在超临界CO2过程中的应用[J]. 化工进展,2007,26(8):1080-1087.
Ma S L, Lu Z W, Wu Y T, et al. Applications of quartz crystal microbalance in supercritical carbon dioxide processes[J]. Chemical Industry and Engineering Progress, 2007, 26(8): 1080-1087.
[20] O'Sullivan C K, Guilbault G G.Commercial quartz crystal microbalances-theory and applications[J]. Biosensors and Bioelectronics, 1999, 14(8/9): 663-670.
[21] Wegener J, Janshoff A, Steinem C. The quartz crystal microbalance as a novel means to study cell-substrate interactions in situ[J]. Cell Biochemistry and Biophysics, 2001, 34(1): 121-151.
[22] Rodahl M,Kasemo B H. Frequency and dissipation-factor response to localized liquid deposits on a QCM electrode[J]. Sensors and Actuators, 1996, 37(1/2): 111-116.
[23] Rodahl M, Höök F, Krozer A,et al. Quartz crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments[J]. Review of Scientific Instruments, 1995, 66(7): 3924-3930.
[24] Tammelin T, Saarinen T, Österberg M,et al. Preparation of Langmuir/Blodgett-cellulose surfaces by using horizontal dipping procedure.Application for polyelectrolyte adsorption studies performed with QCM-D[J]. Cellulose, 2006, 13(5): 519-535.
[25] Höök F, Rodahl M, Brzezinski P,et al. Energy dissipation kinetics for protein and antibody-antigen adsorption under shear oscillation on a quartz crystal microbalance[J]. Langmuir, 1998, 14(4): 729-734.
[26] Sauerbrey G. Verwendung von schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung[J]. Zeitschrift für Physik, 1959, 155(2): 206-222.
[27] Buttry D A, Ward M D. Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance[J]. ChemInform, 1992, 92(6): 1355-1379.
[28] Voinova M V, Rodahl M, Jonson M,et al. Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: continuum mechanics approach[J]. Physica Scripta, 1999, 59(9): 391-396.
[29] Urbakh M, Daikhin L I. Influence of the surface-morphology on the quartz-crystal microbalance response in a fluid[J]. Langmuir, 1994, 10(8): 2836-2841.
[30] Urbakh M, Daikhin L I. Roughness effect on the frequency of a quartz-crystal resonator in contact with a liquid[J]. Physical Review B: Condensed matter, 1994, 49(7): 4866-4870.
[31] 韦晓兰. 基于QCM-D 技术的细菌生物膜研究[J]. 重庆师范大学学报:自然科学版,2014,31(4):136-140.
Wei X L. The improvement of the study on bacteria bio-film(BBF)by quartz crystal microbalance with dissipation(QCM-D)[J]. Journal of Chongqing Normal University:Natural Science, 2014, 31(4): 136-140.
[32] Gunnars S, Wågberg L, Stuart M. Model films of cellulose. I. Method development and initial results[J]. Cellulose, 2002(9): 239-249.
[33] Bhushan B. Springer handbook of nanotechnology[M]. Berlin: Springer Verlag, 2006.
[34] Roberts G G. Langmuir-Blodgett films[M]. New York: Plenum Press, 1990.
[35] Kistler S F, Schweizer P M. Liquid film coating: scientific principles and their technological implications[M]. London: Chapman & Hall, 1997.
[36] Ulman A. An introduction to ultrathin organic films[M]. New York: Academic Press, 1991.
[37] Ge C Q, Xie C S, Cai S Z. Preparation and gas-sensing properties of Ce-doped ZnO thin-film sensors by dip-coating[J]. Materials Science and Engineering B, 2007, 137(1): 53-58.
[38] Pham V H, Cuong T V, Hur S H,et al. Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating[J]. Carbon, 2010, 48(7): 1945-1951.
[39] 徐常龙,曹小华,柳闽生,等. 自组装单层膜的研究[J]. 江西师范大学学报:自然科学版,2009,33(2):170-174.
Xu C L, Cao X H, Liu M S, et al. The study on self-assembled monolayers[J]. Journal of Jiangxi Normal University: Natural Sciences Edition, 2009, 33(2): 170-174.
[40] Hatanaka D, Takemoto Y, Yamamoto K,et al. Hierarchically self-assembled nanofiber films from amylose-grafted carboxymethyl cellulose[J]. Fibers, 2014, 2(1), 34-44.
[41] Edgar C D, Gray D G. Smooth model cellulose I surfaces from nanocrystal suspensions[J]. Cellulose, 2003, 10(4): 299-306.
[42] Ahola S, Salmi J, Johansson L S, et al. Model films from native cellulose nanofibrils: Preparation, swelling, and surface interactions[J]. Biomacromolecules, 2008, 9(4): 1273-1282.
[43] Nguyen N-T, Wereley S T. Fundamentals and applications of microfluidics[M]. Boston: Artech House, 2002.
[44] Toolan D T W, Howse J R. Development of in situ studies of spin coated polymer films[J]. Journal of Materials Chemistry, 2013, 1(4): 603-616.
[45] Kontturi E, Suchy M, Penttilä P, et al. Amorphous characteristics of an ultrathin cellulose film[J]. Biomacromolecules 2011, 12(3): 770-777.
[46] Kontturi E, Thüne P C, Niemantsverdriet J W. Cellulose model surfaces-simplified preparation by spin coating and characterization by X-ray photoelectron spectroscopy, infrared spectroscopy, and atomic force microscopy[J]. Langmuir, 2003, 19(14): 5735-5741.
[47] Fält S, Wågberg L, Vesterlind E L,et al. Model films of cellulose ID-improved preparation method and characterization of the cellulose film[J]. Cellulose, 2004, 11(2): 151-162.
[48] Roberts G G. Langmuir-blodgett films[J]. Contemporary physics, 1984,25(2):109-128.
[49] 李旸,刘志存. Langmuir-Blodgett膜的研究现状及其应用[J]. 现代生物医学进展, 2009, 9(19): 3779-3793.
Li Y, Liu Z C. The research of Langmuir-Blodgett films and its application[J]. Progress in Modern Biomedicine, 2009, 9(19): 3779-3793.
[50] Blodgett K B. Films built by depositing successive monomolecular layers on a solid surface[J]. Journal of the American Chemical Society, 1935, 57(6): 1007-1022.
[51] Pasquini D, Balogh D T, Antunes P A, et al. Surface morphology and molecular organization of lignins in Langmuir-Blodgett films[J]. Langmuir, 2002, 18(17): 6593-6596.
[52] Josefsson P, Henriksson G, Wågberg L. The physical action of cellulases revealed by a quartz crystal microbalance study using ultrathin cellulose films and pure cellulases[J]. Biomacromolecules, 2008, 9(1): 249-254.
[53] Yu Z Y, Jameel H, Chang H-M, et al. Quantification of bound and free enzymes during enzymatic hydrolysis and their reactivities on cellulose and lignocellulose[J]. Bioresource Technology, 2013, 147: 369-377.
[54] Hu G, Heitmann J A J, Rojas O J. In situ monitoring of cellulose activity by microgravimetry with a quartz crystal microbalance[J]. Journal of Physical Chemistry B, 2009, 113(44): 14761-14768.
[55] Turon X, Rojas O J, Deinhammer R S. Enzymatic kinetics of cellulose hydrolysis: a QCM-D study[J]. Langmuir, 2008, 24(8): 3880-3887.
[56] Saarinen T, Orelma H, Grönqvist S,et al. Adsorption of different laccases on cellulose and lignin surfaces[J]. Bioresources, 2009, 4(1): 94-110.
[57] Ahola S, Turon X, Osterberg M, et al. Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure[J]. Langmuir, 2008, 24(20):11592-11599.
[58] Spence K L, Venditti R A, Rojas O J,et al. The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications[J]. Cellulose, 2010, 17(4): 835-848.
[59] Ferrer A, Quintana E, Filpponen I,et al. Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers[J]. Cellulose, 2012, 19(6): 2179-2193.
[60] Ferrer A, Filpponen I, Rodríguez A,et al. Valorization of residual empty palm fruit bunch fibers(EPFBF)by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper[J]. Bioresource Technology, 2012, 125: 249-255.
[61] Martin-Sampedro R, Filpponen I, Hoeger I C, et al. Rapid and complete enzyme hydrolysis of lignocellulosic nanofibrils[J]. ACS Macro Letters, 2012, 1(11): 1321-1325.
[62] Salas C, Rojas O J, Lucia L A, et al. On the surface interactions of proteins with lignin[J]. ACS Applied Materials & Interfaces, 2013, 5(1): 199-206. |