[1] Han X, He G, Zhao S, et al. Expression analysis of two NAC transcription factors PtNAC068 and PtNAC154 from poplar[J]. Plant molecular biology reporter, 2012, 30(2): 370-378.
[2] Sun L J, Huang L, Hong Y B, et al. Comprehensive analysis suggests overlapping expression of rice ONAC transcription factors in abiotic and biotic stress responses[J]. Int J Mol Sci, 2015, 16(2): 4306-4326.
[3] Su H, Zhang S, Yin Y, et al. Genome-wide analysis of NAM-ATAF1, 2-CUC2 transcription factor family in Solanum lycopersicum[J]. Journal of plant biochemistry and biotechnology, 2014, 24(2): 176-183.
[4] Shiriga K, Sharma R, Kumar K, et al. Genome-wide identification and expression pattern of drought-responsive members of the NAC family in maize[J]. Meta gene, 2014, 2: 407-417.
[5] Souer E, van Houwelingen A, Kloos D, et al. The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia Boundaries[J]. Cell, 1996, 85(2): 159-170.
[6] Aida M, Ishida T, Fukaki H, et al. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant[J]. Plant cell, 1997, 9(6): 841-857.
[7] Olsen A N, Ernst H A, Leggio L L, et al. NAC transcription factors: structurally distinct, functionally diverse[J]. Trends Plant Sci, 2005, 10(2): 79-87.
[8] Satheesh V, Jagannadham P T K, Chidambaranathan P, et al. NAC transcription factor genes: genome-wide identification, phylogenetic, motif and cis-regulatory element analysis in pigeonpea(Cajanus cajan(L.)Millsp.)[J]. Mol Biol Rep, 2014, 41(12): 7763-7773.
[9] Ooka H, Satoh K, Doi K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA Res, 2003, 10(6): 239-247.
[10] Jensen M K, Kjaersgaard T, Nielsen M M, et al. The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signalling[J]. Biochem J, 2010, 426(2): 183-196.
[11] Chen Q F, Wang Q, Xiong L Z, et al. A structural view of the conserved domain of rice stress-responsive NAC1[J]. Protein cell, 2011, 2(1): 55-63.
[12] Yang X, Wang X, Ji L, et al. Overexpression of a Miscanthus lutarioriparius NAC gene MlNAC5 confers enhanced drought and cold tolerance in Arabidopsis[J]. Plant cell reports, 2015, 34(6): 943-958.
[13] Wang B Y, Guo X H, Wang C H, et al. Identification and characterization of plant-specific NAC gene family in canola(Brassica napus L.)reveal novel members involved in cell death[J]. Plant Mol Biol, 2015, 87(4): 395-411.
[14] Zhang J J, Chen J, Yi Q, et al. Novel role of ZmaNAC36 in co-expression of starch synthetic genes in maize endosperm[J]. Plant Mol Biol, 2014, 84(3): 359-369.
[15] Yu X W, Peng H, Liu Y M, et al. CarNAC2, a novel NAC transcription factor in chickpea(Cicer arietinum L.), is associated with drought-response and various developmental processes in transgenic Arabidopsis[J]. J Plant Biol, 2014, 57(1): 55-66.
[16] Zhao Y J, Sun J Y, Xu P, et al. Intro-mediated alternative splicing of wood-associated NAC transcription factor1B regulates cell wall thickening during fiber development in Populus Species1[J]. Plant Physiol, 2014, 164(2): 765-776.
[17] Puranik S, Sahu P P, Srivastava P S, et al. NAC proteins: regulation and role in stress tolerance[J]. Trends Plant Sci, 2012, 17(6): 369-381.
[18] Nuruzzaman M, Sharoni A M, Kikuchi S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants[J]. Front Microbiol, 2013, 4: 248.
[19] Suyal G, Rana V S, Mukherjee S K, et al. Arabidopsis thaliana NAC083 protein interacts with Mungbean yellow mosaic India virus(MYMIV)Rep protein[J]. Virus genes, 2014, 48(3): 486-493.
[20] Zhu M K, Chen G P, Zhang J L, et al. The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato(Solanum lycopersicum)[J]. Plant cell Rep, 2014, 33(11): 1851-1863.
[21] Patil M, Ramu S V, Jathish P, et al. Overexpression of AtNAC2(ANAC092)in groundnut(Arachis hypogaea L.)improves abiotic stress tolerance[J]. Plant Biotechnol Rep, 2014, 8(2): 161-169.
[22] Parvin S, Biswas S, Razzaque S, et al. Salinity and drought tolerance conferred by in planta transformation of SNAC1 transcription factor into a high-yielding rice variety of Bangladesh[J]. Acta Physiol Plant, 2015, 37(4): 1-12.
[23] 邱琼, 朱家红, 张治礼. 巴西橡胶树HbNAC1基因的克隆和表达分析[J]. 热带亚热带植物学报, 2012, 20(5): 469-474.
Qiu Q, Zhu J H, Zhang Z L.Cloning and expression analysis of HbNAC1 in Hevea brasiliensis[J]. Journal of tropical and subtropical botany, 2012, 20(5): 469-474.
[24] 康桂娟, 曾日中, 聂智毅, 等. 巴西橡胶树膜结合NAC转录因子HbNTL1的克隆及生物信息学分析[J]. 中国农学通报, 2012, 28(31): 7-14.
Kang G J, Zeng R Z, Nie Z Y, et al. Cloning and bioinformatics analysis of a membrane-bound NAC transcription factor gene HbNTL1 from Hevea brasiliensis[J]. Chinese agricultural science bulletin, 2012, 28(31): 7-14.
[25] 康桂娟, 曾日中, 聂智毅, 等. 巴西橡胶树NAC转录因子HbNAC1基因的克隆及生物信息学分析[J]. 中国农学通报, 2012, 28(34): 1-11.
Kang G J, Zeng R Z, Nie Z Y, et al. Cloning and bioinformatics analysis of a NAC transcription factor HbNAC1 from Hevea brasiliensis[J]. Chinese agricultural science bulletin, 2012, 28(34): 1-11.
[26] 康桂娟, 黎瑜, 曾日中. 巴西橡胶树HbNAC24基因克隆和表达分析[J]. 西北植物学报, 2014, 34(12): 2374-2381.
Kang G J, Li Y, Zeng R Z. Clone and expression of HbNAC24 from Hevea brasiliensis[J]. Acta Bot Boreal-Occident Sin, 2014, 34(12): 2374-2381.
[27] 康桂娟, 黎瑜, 曾日中. 巴西橡胶树HbNAC33基因的克隆和表达分析[J]. 基因组学与应用生物学, 2014, 33(4): 845-852.
Kang G J, Li Y, Zeng R Z. Molecular cloning and expression analysis of HbNAC33 from Hevea brasiliensis Mül Arg[J]. Genomics and applied biology, 2014, 33(4): 845-852.
[28] An Z W, Wang Q T, Hu Y S, et al. Co-extraction of high-quality RNA and DNA from rubber tree(Hevea brasiliensis)[J]. Afr J Biotechnol, 2012, 11(39): 9308-9314.
[29] Zhao P, Wang W, Sun M. Characterization and expression pattern analysis of DcNAC gene in somatic embryos of Dendrobium candidum Wall Ex Lindl[J]. Plant cell, tissue and organ culture(PCTOC), 2011, 107(1): 151-159.
[30] Shan W, Kuang J F, Chen L, et al. Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening[J]. J Exp Bot, 2012, 63(14):5171-5187.
[31] Shan W, Kuang J F, Lu W J, et al. A banana fruit NAC transcription factor MaNAC1 is a direct target of MaICE1 and involved in cold stress through interacting with MaCBF1[J]. Plant cell environ, 2014, 37(9): 2116-2127.
[32] Zhu J H, Zhang Z L. Ethylene stimulation of latex production in Hevea brasiliensis[J]. Plant Signal Behav, 2009, 4(11): 1-3.
[33] Hao B Z,Wu J L. Laticifer differentiation in Hevea brasiensis: induction by exogenous jasmonic acid and linolenic acid[J]. Ann Bot-london, 2000, 85(1): 37-43.
[34] 于俊红, 杨署光, 黄绵佳,等. 季节、采胶和外源茉莉酸对成龄橡胶树乳管分化的影响[J]. 热带作物学报, 2007, 28(4): 1-5.
Yu J H, Yang S G, Huang M J, et al. Effects of season, exploitation and exogenous jasmonic acid on the laticifer differentiation in mature rubber trees[J]. Chinese journal of tropical crops, 2007, 28(4): 1-5.
[35] 刘世红, 田耀华. 橡胶树抗寒性研究现状与展望[J]. 广东农业科学, 2009, 11(3):26-28.
Liu S H, Tian Y H. Research status and prospect of cold resistance of rubber tree[J]. Guangdong agricultural sciences, 2009, 11(3):26-28.
[36] 王立丰, 吴绍华, 田维敏. 巴西橡胶树抗寒机制研究进展[J]. 热带作物学报, 2012, 33(7):1320-1325.
Wang L F, Wu S H, Tian W M. Advances on the mechanism for chilling tolerance of rubber tree Hevea brasiliensis Muell. Arg.[J]. Chinese journal of tropical crops, 2012, 33(7):1320-1325.
[37] 王祥军, 李维国, 高新生,等. 巴西橡胶树响应低温逆境的生理特征及其调控机制[J]. 植物生理学报, 2012, 48(4):318-324.
Wang X J, Li W G, Gao X S, et al. Physiological characteristics of Hevea brasiliensis in response to low temperature stress and its regulation mechanisms[J]. Plant physiology journal, 2012, 48(4):318-324. |