南京林业大学学报(自然科学版) ›› 2016, Vol. 59 ›› Issue (01): 73-79.doi: 10.3969/j.issn.1000-2006.2016.01.012

• 研究论文 • 上一篇    下一篇

城市人工林空气负离子变化特征及其主要影响因子

关蓓蓓1,郑思俊2,崔心红1,2*   

  1. 1.华东理工大学资源与环境工程学院,上海 200237;
    2.上海市园林科学研究所,上海 200232
  • 出版日期:2016-02-18 发布日期:2016-02-18
  • 基金资助:
    收稿日期:2014-09-17 修回日期:2015-05-28
    基金项目:上海市科委科技攻关项目(12231204600)
    第一作者:关蓓蓓(294986056@qq.com)。*通信作者:崔心红(kysxinhongcui@163.com),教授级高级工程师。
    引文格式:关蓓蓓,郑思俊,崔心红. 城市人工林空气负离子变化特征及其主要影响因子[J]. 南京林业大学学报(自然科学版),2016,40(1):73-79.

The variation and main influencing factors of negative air ions in urban plantation

GUAN Beibei1, ZHENG Sijun2, CUI Xinhong1,2*   

  1. 1. School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237,China;
    2. Shanghai Institute of Landscape Gardening Science, Shanghai 200232, China
  • Online:2016-02-18 Published:2016-02-18

摘要: 由于空气负离子存在瞬时性,1 h或2 h的间断性监测很难准确反映其变化趋势。为获得空气负离子的实时变化趋势并准确分析其影响因子,以上海崇明岛5种人工林为研究对象,开展单层结构人工林空气负离子实时监测及主要影响因子的研究。结果表明:人工林空气负离子浓度日变化曲线呈双峰型曲线,但峰值出现的具体时间和大小因优势种不同而有所差异; 人工林空气负离子浓度存在季节性差异,不同季节空气负离子浓度的均值大小次序为夏季((1 476±17.1)ions/cm3)>冬季((1 310±25.2)ions/cm3)>春季((1 197±12.6)ions/cm3)>秋季((1 089±12.7)ions/cm3); 5种林分空气负离子浓度的年均值大小次序为池杉林((1 405±16.5)ions/cm3)>混交林((1 269±18.1)ions/cm3)>臭椿林((1 259±23.2)ions/cm3)>水杉林((1 257±21.0)ions/cm3)>香樟林((1 093±16.6)ions/cm3); 在一定范围内,林分空气负离子浓度与优势树种树高和环境相对湿度呈正相关,与温度和风速呈负相关; 当光照度小于20 000 lx时,林分负离子浓度与光照度呈显著正相关; 主成分分析表明,相对湿度和光照度是影响林分空气负离子浓度的主要因素。通过比较优势种光合作用日变化和林分空气负离子浓度日变化相似的“M”形双峰曲线,认为植物光合作用也是影响林分空气负离子浓度的重要因子。

Abstract: Due to the instantaneity of negative air ions(NAI), the intermittent monitoring of one hour or two hours was difficult to accurately reflect the trends of NAI. In order to obtain the realtime trend of NAI and the key affecting factors, five different types of plantation forest in Chongming island of Shanghai City were chosen for realtime monitoring of NAI along with environmental factors. The results showed that: the daily variation of NAI concentration(NAIC)was bimodal, but the time of the peak value depended on the dominant tree species. Moreover, NAIC was also influenced by season, the mean values order of NAIC in different season was summer((1 476±17.1)ions/cm3)>winter((1 310±25.2)ions/cm3)>spring((1 197±12.6)ions/cm3)>autumn((1 089±12.7)ions/cm3), and the order in different plantation forest was Taxodium ascendens forest((1 405±16.5)ions/cm3)>mixed forest((1 269±18.1)ions/cm3)>Ailanthus altissima forest((1 259±23.2)ions/cm3)>Metasequoia glyptostroboides forest((1 257±21.0)ions/cm3)>Cinnamomum camphor forest((1 093±16.6)ions/cm3). The correlation analysis showed that, a positive correlation was presented between NAI and tree height as well as relative humidity. A negatine ralationship was found between NAI and temperature as well as wind speed. These was positive correlation between NAI and light intensity when the light intensity was less than 20 000 lx. By principal component analysis, the relative humidity and light intensity were the main factors affecting NAI. In addition, plant photosynthesis was found to be an important factor for the similar daily variation curve of NAI and photosynthesis of dominant tree species.

中图分类号: