毛竹材的动态热机械性能分析

黄梦雪,张文标,张晓春,余文军,李文珠,戴春平,汪孙国

南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (01) : 123-128.

PDF(1931690 KB)
PDF(1931690 KB)
南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (01) : 123-128. DOI: 10.3969/j.issn.1000-2006.2016.01.020
研究论文

毛竹材的动态热机械性能分析

  • 黄梦雪1,张文标1*,张晓春1,余文军1,李文珠1,戴春平2,汪孙国3
作者信息 +

Dynamic mechanical analysis of moso bamboo timber

  • HUANG Mengxue1, ZHANG Wenbiao1*, ZHANG Xiaochun1, YU Wenjun1, LI Wenzhu1, DAI Chunping2, WANG Sunguo3
Author information +
文章历史 +

摘要

采用动态热机械分析(DMTA)测试毛竹材的储能模量(E')和损耗模量(E″),分析在不同初含水率、笔壁径向部位、竹龄及距毛竹基部高度下毛竹材的储能模量和损耗模量及玻璃化转变温度(Tg)。结果表明:①毛竹材储能模量随着温度的升高呈逐渐减小的趋势,损耗模量随着温度的变化出现两个峰,当温度达到玻璃化转变温度时达到第1个峰值。②储能模量和损耗模量受初含水率的影响较大,随着含水率的增加呈相对减小的趋势; 在竹壁径向上,储能模量和损耗模量由内而外依次增大; 在同一温度下,毛竹材的储能模量和损耗模量具有随毛竹高度的增加而降低的趋势; 不同竹龄毛竹材的储能模量和损耗模量略有差别,基本上随竹龄的增大而增大。③毛竹材Tg随含水率的增加而降低,在绝干状态时Tg为217~223 ℃; 含水率为15%到饱水状态时,Tg在113~134 ℃之间; 沿竹壁径向的竹青、竹肉和竹黄的Tg略有差别,30%含水率时的Tg在123~135 ℃之间; 不同竹龄毛竹材的Tg并无较大差异,在120~123 ℃之间; 不同高度的毛竹材Tg也无显著差异,在123~126 ℃之间。研究表明,在毛竹材的实际生产中可通过增加毛竹材周边温度和含水率以增加其塑性,使竹材的竹龄和高度选择更加宽泛。

Abstract

In order to provide a theoretical basis for the bamboo softening and flattening, the storage modulus, loss modulus and glass transition temperature(Tg)of moso bamboo were investigated by dynamic mechanical analysis(DMTA)at various initial moisture contents(MC), radial positions, ages and heights. Results showed that the storage modulus decreased with the temperature increasing. The loss modulus increased firstly and then decreased, but when temperature reached a certain extent, loss modulus increased and then decreased again. The moisture content had a great effect on storage modulus and loss modulus, but both moduli decreased with the MC increasing. The storage modulus and loss modulus increased from inner to outer layer in the radial direction and decreased with the height increasing. Besides, the age had a positive but tiny influence on both storage modulus and loss modulus. As MC increasing, Tg decreased from 217-223 ℃at absolute dry to 113-134 ℃ at MC above 15%. The Tg of outer, median and inner layers of bamboo in the radial direction showed slight differences and they were 123-135 ℃ for bamboo at 30% MC, while they were not affected significantly by the age or height,ranginge from 120℃ to123 ℃ and 123℃ to126 ℃ for different ages and heights, respectively. This study showed that the increase of ambient temperature and MC of bamboo could improve the plasticity of bamboo. This provides the wider choice of bamboo timber at its ages and heights, too.

引用本文

导出引用
黄梦雪,张文标,张晓春,余文军,李文珠,戴春平,汪孙国. 毛竹材的动态热机械性能分析[J]. 南京林业大学学报(自然科学版). 2016, 40(01): 123-128 https://doi.org/10.3969/j.issn.1000-2006.2016.01.020
HUANG Mengxue, ZHANG Wenbiao, ZHANG Xiaochun, YU Wenjun, LI Wenzhu, DAI Chunping, WANG Sunguo. Dynamic mechanical analysis of moso bamboo timber[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2016, 40(01): 123-128 https://doi.org/10.3969/j.issn.1000-2006.2016.01.020
中图分类号: S781   

参考文献

[1] 张齐生. 我国竹材加工利用要重视科学和创新[J]. 浙江林学院学报, 2003, 20(1): 1-4. Zhang Q S. Attaching importance to science and innovation in the processing and utilization of bamboo timber in China[J]. J Zhejiang For Coll, 2003, 20(1): 1-4.
[2] 韩建. 我国竹材人造板发展回顾与展望[J]. 木材工业, 2006, 20(2): 52-55. Han J. History and future of the bamboo-based panel industry in China[J]. China wood industry, 2006, 20(2): 52-55.
[3] 于文吉, 江泽慧,叶克林. 竹材特性研究及其进展[J]. 世界林业研究, 2002, 15(2): 50-55. Yu W J, Jiang Z H, Ye K L. Characteristics research of bamboo and its development[J]. World forestry research, 2002, 15(2): 50-55.
[4] 虞华强. 竹材材性研究概述[J]. 世界竹藤通讯, 2003, 4(1): 5-9. Yu H Q. Study on property of bamboo culms[J]. World bamboo and rattan, 2003, 4(1): 5-9.
[5] 胡够英. 高温热处理竹材动态粘弹性研究[D]. 临安:浙江农林大学, 2012.
[6] 过梅丽. 高聚物与复合材料的动态力学热分析[M]. 北京:化学工业出版社, 2002:32-38.
[7] 邓友娥, 章文贡. 动态机械热分析技术在高聚物性能研究中的应用[J]. 实验室研究与探索, 2002, 21(1): 38-39. Deng Y E, Zhang W G. Application of dynamic mechanical thermal analyses technique in polymer research[J]. Laboratory research and exploration, 2002, 21(1): 38-39.
[8] 李霞镇, 任海青, 王小青. 毛竹材动态热机械特性分析[J]. 西南林学院学报, 2011, 31(4): 80-84. Li X Z, Ren H Q, Wang X Q. Analysis on dynamic mechanical properties of phyllostachys pubescens material[J]. Journal of Southwest Forestry University, 2011, 31(4): 80-84.
[9] Matan N, Kyokong B, Preechatiwong W. Softening behavior of black sweet-bamboo(Dendrocalamus asper Backer)at various initial moisture contents[J]. Walailak journal of science and technology(WJST), 2011, 4(2): 225-236.
[10] 胡够英, 姚迟强, 杜兰星, 等. 毛竹动态粘弹性研究[J]. 浙江林业科技, 2012, 32(4): 24-27. Hu G Y, Yao C Q, Du L X, et al. Study on dynamic mechanical properties of bamboo culm[J]. Journal of Zhejiang for sci & tech, 2012, 32(4): 24-27.
[11] Liu Z J, Jiang Z, Cai Z, et al. Dynamic mechanical thermal analysis of moso bamboo(Phyllostachys heterocycla)at different moisture content[J]. Bio resources, 2012, 7(2): 1548-1557.
[12] 杜春贵, 刘志坤, 张宏, 等. 杉木积成材的动态热机械分析[J]. 南京林业大学学报(自然科学版), 2009, 33(4): 117-120. Du C G, Liu Z K, Zhang H, et al. Dynamic mechanical analysis for Chinese fir oriented laminated stick lumber[J].Journal of Nanjing Forestry University(natural sciences edition), 2009, 33(4): 117-120.
[13] Obataya E, Furuta Y, Gril J. Dynamic viscoelastic properties of wood acetylated with acetic anhydride solution of glucose pentaacetate[J]. Journal of wood science, 2003, 49(2): 152-157.
[14] Jiang J, Lu J. Dynamic viscoelastic behavior of wood under drying conditions[J]. Frontiers of forestry in China, 2009, 4(3): 374-379.
[15] 何曼君,陈维笑,董西侠. 高分子物理[M]. 上海:复旦大学出版社, 2000:24-39.
[16] Cheng R X, Zhang Q S, Sui S J. Improvement of softening treatment technology of bamboo[J]. Wood science and technology, 2006, 40(4): 327-335.
[17] 刘一星,赵广杰. 木质资源材料学[M]. 北京:中国林业出版社, 2004:69-75.
[18] 江泽慧, 于文吉, 余养伦. 竹材化学成分分析和表面性能表征[J]. 东北林业大学学报, 2006, 34(4): 1-6. Jiang Z H, Yu W J, Yu Y L. Analysis of chemical components of bamboo wood and characteristic of surface performance[J]. Journal of Northeast Forestry University, 2006, 34(4): 1-6.
[19] 侯玲艳, 赵荣军, 任海青, 等. 不同竹龄毛竹材表面颜色, 润湿性及化学成分分析[J]. 南京林业大学学报(自然科学版), 2012, 36(2): 159-162. Hou L Y, Zhao R J, Ren H Q, et al. Analysis of surface color and wettability and chemical composition of different age phyllostachys pubescens[J]. Journal of Nanjing Forestry University(natural sciences edition), 2012, 36(2): 159-162.
[20] 杨淑惠. 植物纤维化学[M]. 北京:中国轻工业出版社, 2001:70-230.
[21] 韩书广, 那斌, 罗婉珺, 等. 不同含水率速生杨木 DMA 图谱分析及应用[J]. 东北林业大学学报, 2011, 39(9): 69-70. Han S G, Na B, Luo W J, et al. DMA spectra analysis of fast-growing poplar with different moisture contents[J]. Journal of Northeast Forestry University, 2011, 39(9): 69-70.
[22] 程瑞香. 动态热机械分析在木材加工行业的应用[J]. 木材工业, 2005, 19(4): 28-30. Cheng R X. Applications of dynamic mechanical analysis in wood processing industry[J]. China wood industry, 2005, 19(4): 28-30.
[23] Back E L. Glass transitions of wood components: hold implications for molding and pulping processes[J]. Tappi, 1982, 65: 107-110.
[24] 江敬艳. 圆竹家具的研究[D]. 南京: 南京林业大学, 2001, 86-97. Jiang J Y. A study on bamboo-culm furniture[D]. Nanjing:Nanjing Forestry University,2001.

基金

收稿日期:2015-04-18 修回日期:2015-06-25
基金项目:浙江省重大科技专项项目(2014C02018,2014C02004); 浙江农林大学人才启动项目(2012FR038); 浙江省博士后择优资助项目(BSH1302062)
第一作者:黄梦雪(464685741@qq.com)。*通信作者:张文标(zwb@zafu.edu.cn),教授,博士。
引文格式:黄梦雪,张文标,张晓春,等. 毛竹材的动态热机械性能分析[J]. 南京林业大学学报(自然科学版),2016,40(1):123-128.

PDF(1931690 KB)

Accesses

Citation

Detail

段落导航
相关文章

/