[1] 许大全. 光合作用学[M]. 北京:科学出版社, 2013.
[2] 鄢圣敏, 杨国涛, 马坤, 等. 4个水稻品种(组合)光合特性的比较研究[J].中国农学通报, 2014, 30(3): 44-48.
Yan S M, Yang G T, Ma K, et al. Comparative study on photosynthetic characteristics of four rice varieties(Combinations)[J]. Chinese Agricultural Science Bulletin, 2014, 30(3): 44-48.
[3] 倪建中, 王伟, 郁书君, 等. 不同种源木棉生长及光合特性研究[J]. 南京林业大学学报(自然科学版), 2015, 39(6): 185-189. Doi:10.3969/j.issn.1000-2006.2015.06.033.
Ni J Z, Wang W, Yu S J, et al. Analysis of growth traits and photosynthetic characteristics of Bombax ceiba among different provenances[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2015, 39(6): 185-189.
[4] 王晓红, 纪明山. 入侵植物小飞蓬及其伴生植物的光合特性[J]. 应用生态学报, 2013, 24(1): 71-77.
Wang X H, Ji M S. Photosynthetic characteristics of an invasive plant Conyza canadensis and its associated plants[J]. Journal of Applied Ecology, 2013, 24(1): 71-77.
[5] Gong C, Wang J, Hu C, et al. Interactive response of photosynthetic characteristics in Haloxylon ammodendron and Hedysarum scoparium exposed to soil water and air vapor pressure deficits[J]. Journal of Environmental Sciences, 2015, 34(8): 184-196. Doi:10.1016/j.jes.2015.03.012.
[6] Turnbull M H. The Effect of light quantity and quality during development on the photosynthetic characteristics of six Australian rain forest tree species[J]. Endocrinology, 2015, 36(3): 542-546.
[7] 皇甫超河, 王志勇, 杨殿林. 外来入侵种黄顶菊及其伴生植物光合特性初步研究[J]. 西北植物学报, 2009, 29(4): 781-788.Doi:10.3321/j.issn:1000-4025.2009.04.021.
HuangFu C H, Wang Z Y, Yang D L. Basic photosynthetic characteristics of exotic invasive weed Flaveria bidentis and its comanion species[J]. Acta Botanica Boreali Occidentalia Sinica, 2009, 29(4): 781-788.
[8] Lawlor D W, Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants [J]. Plant Cell and Environment, 2002, 25(2): 275-294.
[9] 张永征, 李海东, 李秀, 等. 光强和水分胁迫对姜叶片光合特性的影响[J]. 园艺学报, 2013,40(11):2255-2262. Doi:10.3969/j.issn.0513-353X.2013.11.018.
Zhang Y Z, Li H D, Li X, et al. Effects of light intensity and water stress on leaf photosynthetic characteristics of ginger[J]. Acta Horticulturae Sinica, 2013, 40(11):2255-2262.
[10] 丁俊祥, 邹杰, 唐立松, 等. 克里雅河流域荒漠-绿洲交错带3种不同生活型植物的光合特性[J]. 生态学报, 2015, 35(3): 733-741.Doi:10.5846/stxb201310302623.
Ding J X, Zou J, Tang L S, et al. Photosynthetic characteristics of three different life-form plants in the desert-oasis ecotone of Keiya River Basin[J]. Acta Ecologica Sinica, 2015, 35(3): 733-741.
[11] Bassman J H, Zwier J C. Gas exchange characteristics of Populus trichocarpa, Populus deltoids and Populus trichocarpa × P. deltoids[J]. Tree Physiology, 1991, 8(2): 145-159.
[12] Baly E C. The kinetics of photosynthesis[J]. Proceedings of the Royal Society of London Series B(Biological Sciences), 1935, 117: 218-239.
[13] Farquhar G D, von Caemmerer S, Berry J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 1980, 149(1):78-90. Doi:10.1007/bf00386231.
[14] 闫小红, 尹建华, 段世华, 等. 四种水稻品种的光合光响应曲线及其模型拟合[J]. 生态学杂志, 2013, 32(3): 604-610.
Yan X H, Yin J H, Duan S H, et al. Photosynthesis light response curves of four rice varieties and model fitting[J]. Chinese Journal of Ecology, 2013, 32(3): 604-610.
[15] Ye Z P, Robakowski P, Suggett D J. A mechanistic model for the light response of photosynthetic electron transport rate based on light harvesting properties of photosynthetic pigment molecules[J]. Planta, 2013, 237(3):837-847. Doi:10.1007/s00425-012-1790-z.
[16] Ye Z P, Suggett J D, Robakowski P, et al. A mechanistic model for the photosynthesis-light response based on the photosynthetic electron transport of photosystem II in C3 and C4 species[J]. New Phytologist, 2013, 199(1):110-120. Doi:10.1111/nph.12242.
[17] Arnon D I. Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris[J]. Plant Physiology, 1949, 24(1):1-15.
[18] Chazdon R L, Pearcy R W, Lee D W, et al. Photosynthetic responses of tropical forest plants to contrasting light environments[J]. Tropical Forest Plant Ecophysiology, 1996:5-55. Doi:10.1007/978-1-4613-1163-8_1.
[19] 叶子飘, 胡文海, 肖宜安, 等. 光合电子流对光响应的机理模型及其应用[J]. 植物生态学报, 2014, 38(11):1241-1249. Doi:10.3724/SP.J.1258.2014.00119.
Ye Z P, Hu W H, Xiao Y, et al. A mechanistic model of light-response of photosynthetic electron flow and its application[J]. Chinese Journal of Plant Ecology, 2014, 38(11):1241-1249.
[20] Valentini R, Epron D, de Angelis P, et al. In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak(Q. cerris L.)leaves: diurnal cycles under different levels of water supply[J]. Plant Cell and Environment, 1995, 18(6): 631-640.
[21] Harley P C, Thomas R B, Reynolds J F, et al. Modelling photosynthesis of cotton grown in elevated CO2[J]. Plant, Cell and Environment, 1992, 15(3):271-282. Doi:10.1111/j.1365-3040.1992.tb00974.x.
[22] 王强, 金则新, 郭水良, 等. 濒危植物长叶榧的光合生理生态特性[J]. 生态学报, 2014, 34(22):6460-6470. Doi:10.5846/stxb201302260307.
Wang Q, Jin Z X, Guo S L, et al. Photosynthetic traits of the endangered plant species Torreya jackii[J]. Acta Ecologica Sinica, 2014, 34(22):6460-6470.
[23] 杨婷, 许琨, 严宁, 等. 三种高山杜鹃的光合生理生态研究[J]. 植物分类与资源学报, 2013, 35(1):17-25. Doi:10.7677/ynzwyj201312056.
Yang T, Xu K, Yan N, et al. Photosynthetic ecophysiology of three species of genus Rhododendron[J]. Plant Diversity and Resources, 2013, 35(1):17-25.
[24] Amthor J S. Respiration and crop productivity[M]. New York: Spinger-Verlag, 1989.
[25] McDowell S C L. Photosynthetic characteristics of invasive and noninvasive species of Rubus (Rosaceae)[J].American Journal of Botany, 2002, 89(9): 1431-1438. Doi:10.3732/ajb.89.9.1431.
[26] Zheng Y L, Feng Y L, Lei Y B, et al. Comparisons of plastic responses to irradiance and physiological traits by invasive Eupatorium adenophorum and its native congeners[J]. Journal of Plant Physiology, 2012, 169(9): 884-891. Doi:10.1016/j.jplph.2012.02.011.
[27] 王高鸿, 陈兰洲, 李根保, 等. 改变捕光色素比例用于提高微藻光合效率[J]. 科学通报, 2005, 50(14):1475-1479. Doi:10.3321/j.issn:0023-074X.2005.14.011.
[28] Heraud P, Beardall J. Changes in chlorophyll fluorescence during exposure of Dunaliella tertiolecta to UV radiation indicate a dynamic interaction between damage and repair processes[J]. Photosynthesis Research, 2000, 63(2): 123-134. Doi:10.1023/A:1006319802047.
[29] Heber U, Bilger W, Türk R, et al. Photoprotection of reaction centres in photosynthetic organisms: mechanisms of thermal energy dissipation in desiccated thalli of the lichen Lobaria pulmonaria[J]. New Phytologist, 2010, 185(2):459-470. Doi:10.1111/j.1469-8137.2009.03064.
[30] García-Plazaola J I, Esteban R, Fernández-Marín B, et al. Thermal energy dissipation and xanthophyll cycles beyond the Arabidopsis model[J]. Photosynthesis Research, 2012, 113(1-3): 89-103. Doi:10.1007/s11120-012-9760-7.
[31] Palliotti A, Tombesi S, Frioni T, et al. Physiological parameters and protective energy dissipation mechanisms expressed in the leaves of two Vitis vinifera L. genotypes under multiple summer stresses[J]. Journal of Plant Physiology, 2015, 185: 84-92. Doi:10.1016/j.jplph.2015.07.007.
[32] 赵广琦, 张利权, 梁霞. 芦苇与入侵植物互花米草的光合特性比较[J]. 生态学报, 2005, 25(7): 1604-1611. Doi:10.3321/j.issn:1000-0933.2005.07.011.
Zhao G Q, Zhang L Q, Liang X. A comparison of phtosynthetic characteristics between an nivasive plant Spartina alterniflora and an indigenous plant Phragmites australis[J]. Acta Ecologica Sinica, 2005, 25(7):1604-1611.
[33] 朱慧, 马瑞君. 入侵植物假臭草及其伴生种的光合特性[J]. 福建林学院学报, 2010, 30(2): 145-149. Doi:10.3969/j.issn.1001-389X.2010.02.012.
Zhu H, Ma R J. Comparison of photosynthetic characteristics between an invasive plant, Eupatorium catarium and associated species[J]. Journal of Fjujian College of Forestry, 2010, 30(2): 145-149.
[34] Nagel J M, Griffin K L. An gas-exchange characteristics help explain the invasive success of Lythrum salicaria?[J]. Biological Invasions, 2004, 6(1):101-111. Doi:10.1023/b:binv.0000010125.93370.32. |