南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (06): 1-8.doi: 10.3969/j.issn.1000-2006.2016.06.001
• 专题报道 • 下一篇
周之栋,卜晓莉,吴永波,薛建辉*
出版日期:
2016-12-18
发布日期:
2016-12-18
基金资助:
ZHOU Zhidong, BU Xiaoli, WU Yongbo, XUE Jianhui*
Online:
2016-12-18
Published:
2016-12-18
摘要: 生物炭是在低氧条件下生物质经过热裂解得到的含碳丰富的产品,可提高土壤酸碱度,具有保水保肥及改善土壤微生物特性等功能。综述了生物炭对土壤微生物生物量、微生物群落结构及土壤酶活性的影响,多数研究表明:生物炭的碱性性质及多孔性质提供了适宜微生物生长的微环境,从而增加了土壤微生物生物量碳、微生物生物量氮等的含量; 生物炭含有的营养物质及多孔性质,促进了土壤中细菌及某些功能菌的生长,但同时生物炭中含有的重金属及多环芳烃等有毒物质对细菌生长存在抑制作用; 相比于土壤细菌,生物炭碳氮比(C/N)高、含大量难降解碳化合物,则有利于土壤真菌生长,并且生物炭具有的较大孔隙度,为真菌菌丝提供了附着位点; 生物炭对微生物的促进作用间接提高了土壤中脱氢酶、脲酶、β-葡萄糖苷酶等土壤酶活性。因此,未来应进一步探索生物炭与土壤微生物之间的相互作用机理,深入了解生物炭的土壤改良作用,深化对土壤微生物多样性的认识。
中图分类号:
周之栋,卜晓莉,吴永波,等. 生物炭对土壤微生物特性影响的研究进展[J]. 南京林业大学学报(自然科学版), 2016, 40(06): 1-8.
ZHOU Zhidong, BU Xiaoli, WU Yongbo, XUE Jianhui. Research advances in biochar effects on soil microbial properties[J].Journal of Nanjing Forestry University (Natural Science Edition), 2016, 40(06): 1-8.DOI: 10.3969/j.issn.1000-2006.2016.06.001.
[1] Lehmann J, Rillig M C, Thies J, et al. Biochar effects on soil biota—a review[J]. Soil Biology and Biochemistry, 2011, 43(9): 1812-1836.Doi:10.1016/j.soilbio.2011.04.022.
[2] Zielińska A, Oleszczuk P, Charmas B, et al. Effect of sewage sludge properties on the biochar characteristic[J]. Journal of Analytical and Applied Pyrolysis, 2015, 112: 201-213.Doi:10.1016/j.jaap.2015.01.025. [3] Lu H, Zhang W, Wang S, et al. Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures[J]. Journal of Analytical and Applied Pyrolysis, 2013, 102: 137-143.Doi:10.1016/j.jaap.2013.03.004. [4] Yargicoglu E N, Sadasivam B Y, Reddy K R, et al. Physical and chemical characterization of waste wood derived biochars[J]. Waste Management, 2015, 36: 256-268.Doi:10.1016/j.wasman.2014.10.029. [5] Zhang H, Voroney R P, Price G W. Effects of temperature and processing conditions on biochar chemical properties and their influence on soil C and N transformations[J]. Soil Biology and Biochemistry, 2015, 83: 19-28.Doi:10.1016/j.soilbio.2015.01.006. [6] Bamminger C, Marschner B, Jüschke E. An incubation study on the stability and biological effects of pyrogenic and hydrothermal biochar in two soils[J]. European Journal of Soil Science, 2013, 65(1): 72-82.Doi:10.1111/ejss.12074. [7] 张又弛, 李会丹. 生物炭对土壤中微生物群落结构及其生物地球化学功能的影响[J]. 生态环境学报, 2015, 24(5): 898-905.Doi:10.16258/j.cnki.1674-5906.2015.05.027. Zhang Y C, Li H D. Influence of biochar on the community structure and biogeochemical functions of microorganisms in soils [J]. Ecology and Environmental Sciences, 2015, 24(5): 898-905. [8] Karami N, Clemente R, Moreno-Jiménez E, et al. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass[J]. Journal of Hazardous Materials, 2011, 191(1): 41-48. [9] Sun K, Gao B, Ro K S, et al. Assessment of herbicide sorption by biochars and organic matter associated with soil and sediment[J]. Environmental Pollution, 2012, 163: 167-173.Doi:10.1016/j.envpol.2011.12.015. [10] Durenkamp M, Luo Y, Brookes P C. Impact of black carbon addition to soil on the determination of soil microbial biomass by fumigation extraction[J]. Soil Biology and Biochemistry, 2010, 42(11): 2026-2029.Doi:10.1016/j.soilbio.2010.07.016. [11] Steinbeiss S, Gleixner G, Antonietti M. Effect of biochar amendment on soil carbon balance and soil microbial activity[J]. Soil Biology and Biochemistry, 2009, 41(6): 1301-1310.Doi:10.1016/j.soilbio.2009.03.016. [12] Santos F, Torn M S, Bird J A. Biological degradation of pyrogenic organic matter in temperate forest soils[J]. Soil Biology and Biochemistry, 2012, 51: 115-124.Doi:10.1016/j.soilbio.2012.04.005. [13] Anderson C R, Hamonts K, Clough T J, et al. Biochar does not affect soil N-transformations or microbial community structure under ruminant urine patches but does alter relative proportions of nitrogen cycling bacteria[J]. Agriculture, Ecosystems & Environment, 2014, 191: 63-72.Doi:10.1016/j.agee.2014.02.021. [14] Bailey V L, Fansler S J, Smith J L, et al. Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization[J]. Soil Biology and Biochemistry, 2011, 43(2): 296-301.Doi:10.1016/j.soilbio.2010.10.014. [15] Ameloot N, De Neve S, Jegajeevagan K, et al. Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils[J]. Soil Biology and Biochemistry, 2013, 57: 401-410.Doi:10.1016/j.soilbio.2012.10.025. [16] Rutigliano F A, Romano M, Marzaioli R, et al. Effect of biochar addition on soil microbial community in a wheat crop[J]. European Journal of Soil Biology, 2014, 60: 9-15.Doi:10.1016/j.ejsobi.2013.10.007. [17] Roesch L F, Fulthorpe R R, Riva A, et al. Pyrosequencing enumerates and contrasts soil microbial diversity[J]. The ISME Journal, 2007, 1(4): 283-290.Doi:10.1038/ismej.2007.053. [18] Kibblewhite M G, Ritz K, Swift M J. Soil health in agricultural systems[J]. Philos Trans R Soc: B, Biol Sci, 2008, 363(1492): 685-701.Doi:10.1098/rstb.2007.2178. [19] Quilliam R S, Glanville H C, Wadec S C, et al. Life in the ‘charosphere' Does biochar in agricultural soil provide a significant habitat for microorganisms?[J] Soil Biology and Biochemistry, 2013, 65: 287-293.Doi:10.1016/j.soilbio.2013.06.004. [20] Brookes P. The soil microbial biomass: concept, measurement and applications in soil ecosystem research[J]. Microbes and Environments, 2001, 16(3): 131-140.Doi:10.1264/jsmez.2001.131. [21] Pietri J C A, Brookes P C. Relationships between soil pH and microbial properties in a UK arable soil[J]. Soil Biology and Biochemistry, 2008, 40(7): 1856-1861.Doi:10.1016/j.soilbio.2008.03.020. [22] Cheng C H, Lehmann J, Thies J E, et al. Oxidation of black carbon by biotic and abiotic processes[J]. Organic Geochemistry, 2006, 37(11): 1477-1488.Doi:10.1016/j.orggeochem.2006.06.022. [23] Liang B, Lehmann J, Solomon D, et al. Black carbon increases cation exchange capacity in soils[J]. Soil Science Society of America Journal, 2006, 70(5): 1719.Doi:10.2136/sssaj.2005.0383. [24] Steiner C, Das K C, Garcia M, et al. Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic ferralsol[J]. Pedobiologia, 2008, 51(5): 359-366.Doi:10.1016/j.pedobi.2007.08.002. [25] Saito M, Marumoto T. Inoculation with arbuscular mycorrhizal fungi: the status quo in Japan and the future prospects[J]. Diversity and Integration in Mycorrhizas, 2002, 244: 273-279.Doi:10.1007/978-94-017-1284-2-27. [26] Warnock D D, Lehmann J, Kuyper T W, et al. Mycorrhizal responses to biochar in soil-concepts and mechanisms[J]. Plant Soil, 2007, 300(1): 9-20.Doi:10.1007/s11104-007-9391-5. [27] Zavalloni C, Alberti G, Biasiol S, et al. Microbial mineralization of biochar and wheat straw mixture in soil: a short-term study[J]. Applied Soil Ecology, 2011, 50: 45-51.Doi:10.1016/j.apsoil.2011.07.012. [28] Bargmann I, Martens R, Rillig M C, et al. Hydrochar amendment promotes microbial immobilization of mineral nitrogen[J]. Journal of plant nutrition and soil science, 2013, 177(1): 59-67.Doi:10.1002/jpln.2013.00154. [29] Jien S H, Wang C S. Effects of biochar on soil properties and erosion potential in a highly weathered soil[J]. Catena, 2013, 110: 225-233.Doi:10.1016/j.catena.2013.06.021. [30] Bamminger C, Zaiser N, Zinsser P, et al. Effects of biochar, earthworms, and litter addition on soil microbial activity and abundance in a temperate agricultural soil[J]. Biology and Fertility of Soils, 2014, 50(8): 1189-1200.Doi:10.1007/S00374-014-0968-X. [31] 韩光明, 孟军, 曹婷, 等. 生物炭对菠菜根际微生物及土壤理化性质的影响[J]. 沈阳农业大学学报, 2012, 43(5): 515-520.Doi:10.3969/j.issn.1000-1700.2012.05.001. Han G M, Meng J, Cao T, et al. Effect of biochar on microorganisms quantities and soil physicochemical property in rhizosphere of spinach[J]. Journal of Shenyang Agricultural University, 2012, 43(5): 515-520. [32] 胡雲飞, 李荣林, 杨亦扬. 生物炭对茶园土壤CO2和N2O排放量及微生物特性的影响[J]. 应用生态学报, 2015, 26(7): 1954-1960. Hu Y F, Li R L, Yang Y Y. Effects of biochar on CO2 and N2O emissions and microbial properties of tea garden soils[J]. Chinese Journal of Applied Ecology, 2015, 26(7): 1954-1960. [33] 张星, 刘杏认, 张晴雯, 等. 生物炭和秸秆还田对华北农田玉米生育期土壤微生物量的影响[J]. 农业环境科学学报, 2015, 34(10): 1943-1950.Doi:10.11654/jaes.2015.10.015. Zhang X, Liu X R, Zhang Q W, et al. Effects of biochar and straw direct return on soil microbial biomass during maize growth season in north China plain[J]. Journal of Agro-Environment Science, 2015, 34(10): 1943-1950. [34] Bruun S, Jensen E S, Jensen L S. Microbial mineralization and assimilation of black carbon: dependency on degree of thermal alteration[J]. Organic Geochemistry, 2008,39(7): 839-845.Doi:10.1016/j.orggeochem.2008.04.020. [35] Kuzyakov Y, Subbotina I, Chen H, et al. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling[J]. Soil Biology and Biochemistry, 2009, 41(2): 210-219.Doi:10.1016/j.soilbio.2008.10.016. [36] Demisie W, Liu Z, Zhang M. Effect of biochar on carbon fractions and enzyme activity of red soil[J]. Catena, 2014, 121: 214-221.Doi:10.1016/j.catena.2014.05.020. [37] Liang B, Lehmann J, Sohi S P, et al. Black carbon affects the cycling of non-black carbon in soil[J]. Organic Geochemistry, 2010, 41(2): 206-213.Doi:10.1016/j.orggeochem.2009.09.007. [38] Cornelissen G, Gustafsson O, Bucheli T D, et al. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation,and biodegradation[J]. Environmental Science and Technology, 2005, 39(18): 6881-6895. [39] Liang B Q, Lehmann J, Sohi S P, et al.Black carbon affects the cycling of non-black carbon in soil[J]. Organic Geochemistry, 2010,41(2): 206-213.Doi:10.1016/j.orggeochem.2009.09.007. [40] Dempster D N, Gleeson D B, Solaiman Z M, et al. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil[J]. Plant Soil, 2011, 354(1): 311-324.Doi:10.1007/s111 04-011-1067-5. [41] Deenik J L, McClellan T, Uehara G, et al. Charcoal volatile matter content influences plant growth and soil nitrogen transformations[J]. Soil Science Society of America Journal, 2010, 74(4): 1259-1270.Doi:10.2136/sssaj.2009.01115. [42] Girvan M S, Campbell C D, Killham K, et al. Bacterial diversity promotes community stability and functional resilience after perturbation[J]. Environmental Microbiology, 2005, 7(3): 301-313.Doi:10.1111/j.1462-2920.2005.00695x. [43] Kolb S E, Fermanich K J, Dornbush M E. Effect of charcoal quantity on microbial biomass and activity in temperate soils[J]. Soil Science Society of America Journal, 2009, 73(4): 1173.Doi:10.2136/sssaj 2008.0232. [44] Anderson C R, Condron L M, Clough T J, et al. Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus[J]. Pedobiologia, 2011, 54(5): 309-320.Doi:10.1016/j.pedobi.2011.07.005. [45] Jones D L, Murphy D V, Khalid M, et al. Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated[J]. Soil Biology and Biochemistry, 2011, 43(8): 1723-1731.Doi:10.1016/j.soilbio.2011.04.018. [46] Nielsen S, Minchin T, Kimber S, et al. Comparative analysis of the microbial communities in agricultural soil amended with enhanced biochars or traditional fertilisers[J]. Agriculture, Ecosystems and Environment, 2014, 191: 73-82.Doi:10.1016/j.agee.2014.04.086. [47] Beesley L, Moreno-Jiménez E, Gomez-Eyles J L. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil[J].Environmental Pollution, 2010, 158(6): 2282-2287.Doi:10.1016/j.envpol.2010.02.003. [48] Uchimiya M, Lima I M, Klasson K T, et al. Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter[J]. Chemosphere, 2010, 80(8): 935-940.Doi:10.1016/j.chemophere.2010.05.020. [49] Park J H, Choppala G K, Bolan N S, et al. Biochar reduces the bioavailability and phytotoxicity of heavy metals[J]. Plant and Soil, 2011(1): 439-451.Doi:10.1007/s11104-0948-y. [50] Shih Y, Su Y, Ho R, et al. Distinctive sorption mechanisms of 4-chlorophenol with black carbons as elucidated by different pH[J]. Science of the Total Environment, 2012, 433: 523-529.Doi:10.1016/j.scitotenv.2012.06.050. [51] Hagner M, Penttinen O P, Tiilikkala K, et al. The effects of biochar, wood vinegar and plants on glyphosate leaching and degradation[J]. European Journal of Soil Biology, 2013, 58: 1-7.Doi:10.1016/j.ejsobi.2013.05.002. [52] Kolton M, Harel H Y, Pasternak Z, et al. Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants[J]. Applied and Environmental Microbiology, 2011, 77(14): 4924-4930.Doi:10.1128/AEM.00148-011. [53] Chen J, Liu X, Zheng J, et al. Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China[J]. Applied Soil Ecology, 2013, 71: 33-44.Doi:10.1016/j.apsoil.2013.05.003. [54] Kirby R. Actinomycetes and lignin degradation[J]. Advances in Applied Microbiology, 2006, 5C: 125-168.Doi:10.1016/s0065-2164(05)58004-3. [55] Muhammad N, Dai Z, Xiao K, et al. Changes in microbial community structure due to biochars generated from different feedstocks and their relationships with soil chemical properties[J]. Geoderma, 2014, 226: 270-278.Doi:10.1016/j.geoderma.2014.01.023. [56] Doan T T, Bouvier C, Bettarel Y, et al. Influence of buffalo manure, compost, vermicompost and biochar amendments on bacterial and viral communities in soil and adjacent aquatic systems[J]. Applied Soil Ecology, 2014, 73: 78-86.Doi:10.1016/j.apsoil.2013.08.016. [57] 郑春雨, 王光华. 湿地生态系统中主要功能微生物研究进展[J]. 湿地科学, 2012, 10(2): 243-249.Doi:10.3969/j.issn.1672-5948.2012.02.018. Zheng C X, Wang G H. Research progress on main functional microorganisms in wetland ecosystems[J]. Wetland Science, 2012, 10(2): 243-249. [58] 顾美英, 徐万里, 唐光木, 等. 生物炭对灰漠土和风沙土土壤微生物多样性及与氮素相关微生物功能的影响[J]. 新疆农业科学, 2014, 51(5): 926-934.Doi:10.6648/j.issn.1001-4330.2014.05.020. Gu M Y, Xu W L, Tang G M, et al. Effects of biochar on soil microbial diversity and function related with N transformation in grey desert soil and aeolian sandy soil in Xinjiang[J]. Xinjiang Agricultural Sciences, 2014, 51(5): 926-934. [59] O'neill B, Grossman J, Tsai M T, et al. Bacterial community composition in Brazilian Anthrosols and adjacent soils characterized using culturing and molecular identification[J]. Microbial Ecology, 2009, 58(1): 23-35.Doi:10.1007/s00248-009-9515-y. [60] Khodadad C L M, Zimmerman A R, Green S J, et al. Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments[J]. Soil Biology and Biochemistry, 2011, 43(2): 385-392.Doi:10.1016/j.soilbio.2010.11.005. [61] Bååth E, Frostegård Å, Pennanen T, et al. Microbial community structure and pH response in relation to soil organic matter quality in wood-ash fertilized, clear-cut or burned coniferous forest soils[J]. Soil Biology and Biochemistry, 1995, 27(2): 229-240.Doi:10.1016/0038-0717(94)00140-v. [62] Prayogo C, Jones J E, Baeyens J, et al. Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure[J]. Biology and Fertility of Soils, 2014, 50: 695-702.Doi:10.1007/s00374-013-0884-5. [63] Khodadad C L M, Zimmerman A R, Green S J, et al. Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments[J]. Soil Biology and Biochemistry, 2011, 43(2): 385-392.Doi:10.1016/j.soilbio.2010.11.005. [64] Watzinger A, Feichtmair S, Kitzler B, et al. Soil microbial communities responded to biochar application in temperate soils and slowly metabolized 13C-labelled biochar as revealed by 13C PLFA analyses: results from a short-term incubation and pot experiment[J]. Eur J Soi Sci, 2014, 65(1): 40-51.Doi:10.1111/ejss.12100. [65] Carson J K, Campbell L, Rooney D, et al. Minerals in soil select distinct bacterial communities in their microhabitats[J]. FEMS Microbiology Ecology, 2009, 67(3): 381-388.Doi:10.1111/j.1574-6941.2008.00645.x. [66] Cao X, Harris W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation[J]. Bioresource Technology, 2010, 101(14): 5222-5228.Doi:10.1016/j.biortech.2010.02.052. [67] Khan T F, Ahmed M M, Huq S M I. Effects of biochar on the abundance of three agriculturally important soil bacteria[J]. Journal of Agricultural Chemistry and Environment, 2014, 3(2): 31-39.Doi:10.4236/jacen.2014.32005. [68] De Deyn G B, Cornelissen J H C, Bardgett R D. Plant functional traits and soil carbon sequestration in contrasting biomes[J]. Ecology Letters, 2008, 11(5): 516-531.Doi:10.1111/j.1461-0248.2008.01164.x. [69] Fierer N, Strickland M S, Liptzin D, et al. Global patterns in belowground communities[J]. Ecology Letters, 2009, 12(11): 1238-1249.Doi:10.1111/j.1461-0248.2009.01360.x. [70] Keiblinger K M, Hall E K, Wanek W, et al. The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency[J]. FEMS Microbiology Ecology, 2010, 73(3): 430-440.Doi:10.1111/j.1574-6941.2010.00912.x. [71] Waring B G, Averill C, Hawkes C V. Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: insights from meta-analysis and theoretical models[J]. Ecology Letters, 2013, 16(7): 887-894.Doi:10.1111/ele.12125. [72] Ng E L, Patti A F, Rose M T, et al. Functional stoichiometry of soil microbial communities after amendment with stabilised organic matter[J]. Soil Biology and Biochemistry, 2014, 76: 170-178.Doi:10.1016/j.soilbio.2014.05.016. [73] Sopeña F, Bending G D. Impacts of biochar on bioavailability of the fungicide azoxystrobin: a comparison of the effect on biodegradation rate and toxicity to the fungal community[J]. Chemosphere, 2013, 91(11): 1525-1533. [74] Rousk J, Dempster D N, Jones D L. Transient biochar effects on decomposer microbial growth rates: evidence from two agricultural case-studies[J]. European Journal of Soil Science, 2013, 64(6): 770-776.Doi:10.1111/ejss.12103. [75] Jones D L, Rousk J, Edwards-Jones G, et al. Biochar-mediated changes in soil quality and plant growth in a three year field trial[J]. Soil Biology and Biochemistry, 2012, 45: 113-124. [76] Gianfreda L, Rao M A. Interactions between xenobiotics and microbial and enzymatic soil activity[J]. Critical Reviews in Environmental Science and Technology, 2008, 38(4): 269-310.Doi:10.1080/10643380701413526. [77] Paz-Ferreiro J, Gascó G, Gutiérrez B, et al. Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil[J]. Biology and Fertility of Soils, 2011, 48(5): 511-517.Doi:10.1007/s00374-011-0644-3. [78] Glaser B, Lehmann J, Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review[J]. Biology and Fertility of Soils, 2002, 35(4): 219-230.Doi:10.1007/s00374-002-0466-4. [79] Awad Y M, Blagodatskaya E, Ok Y S, et al. Effects of polyacrylamide, biopolymer, and biochar on decomposition of soil organic matter and plant residues as determined by 14C and enzyme activities[J]. European Journal of Soil Biology, 2012, 48: 1-10. [80] 周震峰, 王建超, 饶潇潇. 添加生物炭对土壤酶活性的影响[J]. 江西农业学报, 2015, 27(6): 110-112.Doi:10.3969/j.issn.1001-8581.2015.06.027. Zhou Z F, Wang J C, Rao X X. Impact of adding biochar on enzyme activity in soil[J]. Acta Agriculturae Jiangxi, 2015, 27(6): 110-112. [81] Baran S, Bielińska J E, Oleszczuk P. Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons[J]. Geoderma, 2004,118(3): 221-232.Doi:10.1016/s0016-7061(03)00205-2. [82] Oleszczuk P, Josko I, Futa B, et al. Effect of pesticides on microorganisms, enzymatic activity and plant in biochar-amended soil[J]. Geoderma, 2014, 214: 10-18. [83] Marx M C, Wood M, Jarvis S C. A microplate fluorimetric assay for the study of enzyme diversity in soils[J]. Soil Biology and Biochemistry, 2001, 33(12): 1633-1640.Doi:10.1016/s0038-0717(01)-00079-7. [84] 冯爱青, 张民, 李成亮, 等. 秸秆及秸秆黑炭对小麦养分吸收及棕壤酶活性的影响[J]. 生态学报, 2015, 35(15): 5269-5277. Feng A Q, Zhang M, Li C L, et al. Effects of straw and straw biochar on wheat nutrient uptake and enzyme activity in brown soil[J]. Acta Ecologica Sinica, 2015, 35(15): 5269-5277. [85] 邹春娇, 张勇勇, 张一鸣, 等. 生物炭对设施连作黄瓜根域基质酶活性和微生物的调节[J]. 应用生态学报, 2015, 26(6): 1772-1778. Zou C J, Zhang Y Y, Zhang Y M, et al. Regulation of biochar on matrix enzyme activities and microorganisms around cucumber roots under continuous cropping[J]. Chinese Journal of Applied Ecology, 2015, 26(6): 1772-1778. [86] 张彩霞. 新一代高通量测序技术研究土壤微生物群落结构对环境条件的响应[D]. 南京: 南京农业大学, 2012: 1-7. Zhang C X. The research of microorganism composition responses to environment conditions with the next generation high throughout DNA sequencing technology[D]. Nanjing: Nanjing Agriculture University, 2012: 1-7. [87] 李桥. 基于高通量测序技术下土壤微生物群落结构的研究[D]. 济南: 山东师范大学, 2014: 2-3. Li J. Research of soil microbial community structure based on high-throughput sequencing technology[D]. Jinan:Shandong Normal University, 2014: 2-3. |
[1] | 杨永. 裸子植物的系统分类:历史、现状和展望[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 14-26. |
[2] | 张瑞, 周正虎, 王传宽, 金鹰. 东北温带森林不同材性树种木质部解剖和水力性状[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 229-236. |
[3] | 黄永健, 荀航, 张保, 尤俊昊, 姚曦, 汤锋. HPLC同时测定竹笋中8种酚酸类物质含量的方法研究及其应用[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 237-244. |
[4] | 邓云飞. 安息香科的系统学研究进展[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 27-35. |
[5] | 李家亮, 巫大宇, 毛康珊. 柏木属的分类地位和物种多样性研究现状与建议[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 36-45. |
[6] | 李涌福, 杨庆华, 陈林, 张敏, 向其柏, 王贤荣, 段一凡. 木犀属内分组关系的分类修订[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 58-62. |
[7] | 杨皓, 刘超, 庄家尧, 张树同, 张文韬, 毛国豪. 不同载体菌肥对紫穗槐生长和光合特性及土壤养分的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 81-89. |
[8] | 丁咏, 刘鑫, 张金池, 王宇浩, 陈美玲, 李涛, 刘孝武, 周悦湘, 孙连浩, 廖艺. 酸雨类型转变对杉木林地土壤和细根生长的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 90-98. |
[9] | 武燕, 黄青, 刘讯, 郑睿, 岑佳宝, 丁波, 张运林, 符裕红. 西南喀斯特地区马尾松人工林林龄对土壤理化性质的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 99-107. |
[10] | 卜晓婷, 付威, 李淑娴, 徐志标, 彭大庆, 徐林桥. 幼化和外源激素对娜塔栎嫩枝扦插生根的影响及其生根解剖学观察[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 129-136. |
[11] | 杜晋城, 李欣欣, 王泽亮, 刘偲, 钟毅, 王丽华. 聚乙二醇胁迫下3个油橄榄品种生理指标响应[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 137-143. |
[12] | 方静, 张书曼, 严善春, 武帅, 赵佳齐, 孟昭军. 两种丛枝菌根真菌复合接种对青山杨叶片抗美国白蛾的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 144-154. |
[13] | 张馨方, 王广鹏, 张树航, 李颖, 郭燕. 不同抗螨性板栗差异次生代谢物筛选与分析[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 234-240. |
[14] | 杨宏, 伊贤贵, 王贤荣, 吴桐, 周华近, 陈洁, 李蒙, 朱兆青. 樱花新品种‘元春’[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 275-276. |
[15] | 田梦阳, 朱树林, 窦全琴, 季艳红. 薄壳山核桃-茶间作对‘安吉白茶’速生期光合特性的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 86-96. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||