[1] Ragauskas A J, Williams C K, Davison B H, et al. The path forward for biofuels and biomaterials [J]. Science, 2006, 311(5760): 484-489.Doi:10.1126/science.1114736. [2] Ding S Y, Liu Y S, Zeng Y, et al. How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? [J]. Science, 2012, 338(6110): 1055-1060.Doi:10.1126/science.1227491. [3] Vanholme R, Demedts B, Morreel K, et al. Lignin biosynthesis and structure [J]. Plant Physiology, 2010, 153: 895-905.Doi:10.1104199.110.155119. [4] Li M, Si S, Hao B, et al. Mild alkali-pretreatment effectively extracts guaiacyl-rich lignin for high lignocellulose digestibility coupled with largely diminishing yeast fermentation inhibitors in Miscanthus [J]. Bioresource Technology, 2014, 169: 447-454.Doi:10.1016/j.biortech.2014.07.017. [5] Yu Z Y, Jameel H, Chang H M, et al. The effect of delignification of forest biomass on enzymatic hydrolysis [J]. Bioresource Technology, 2011, 102(19): 9083-9089.Doi:10.1016/j.biortech.2011.07.001. [6] Chang H M, Jacobs C, Jameel H, et al. Bleachability difference between RDH and kraft-O2 pulps-role of phenolic hydroxyl groups in the residual lignin [C]. Chicago: Tappi Press, 1996: 147-162. [7] Ban W P, Singh J, Lucia L A. Kraft green liquor pretreatment of softwood chips part Ⅲ: lignin chemical modifications [J]. Holzforschung, 2003, 57(3): 275-281.Doi:10.1515/nf2003.041. [8] 陈立祥, 章怀云. 木质素生物降解及其应用研究进展[J].中南林学院学报, 2003, 23(1): 79-80.Doi:10.3969/j.issn/1673-923x2003.01.006.Chen L X, Zhang H Y. Recent research advances on the lignin biodegradation and applications [J]. Journal of Central South Forestry University, 2003, 23(1): 79-80. [9] Yang L F, Cao J, Jin Y C, et al. Effects of sodium carbonate pretreatment on the chemical compositions and enzymatic saccharification of rice straw [J]. Bioresource Technology, 2012, 124: 283-291.Doi:10.1016/j.biortech.2012.08.041. [10] Jin Y C, Huang T, Geng W H, et al. Comparison of sodium carbonate pretreatment for enzymatic hydrolysis of wheat straw stem and leaf to produce fermentable sugars [J]. Bioresource Technology, 2013, 137: 294-301.Doi:10.1016/j.biortech 2013,03.1401. [11] 孟鑫, 吴文娟, 金永灿. 绿液预处理过程中杨木木质素结构的变化[J]. 南京林业大学学报(自然科学版), 2014, 38(6): 94-98.Doi:10.3969/j.issn/1000-2006.2014.06.018.Meng X, Wu W J, Jin Y C. Structural changes of polar lignin in the process of green liquor pretreatment [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2014, 38(6): 94-98. [12] Sluiter A, Hames B, Ruiz R, et al. NREL/TP-510-42618, determination of structural carbohydrates and lignin in biomass [S]. Laboratory Analytical Procedure, National Renewable Energy Laboratory, 2008. [13] Chen C L. Nitrobenzene and cupric oxide oxidations [C] // Lin S Y, Dence C W. Methods in Lignin Chemistry. Berlin: Springer-Verlag, 1992. [14] Akiyama T, Sugimoto T, Matsumoto Y, et al. Erythro/threo ratio of β-O-4 structures as an important structural characteristic of lignin. I: improvement of ozonation method for the quantitative analysis of lignin side-chain structure [J]. Journal of Wood Science, 2002, 48(3): 210-215.Doi:10.1007/bf00771369. [15] Carpita N C. Structure and biogenesis of the cell walls of grasses [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1996, 47: 445-476.Doi:10.1146/annurev.arplant 47.1445. [16] Bowyer J L, Shmulsky R, Haygreen J G. Forest products and sood science [M]. Iowa: Blackwell Publish, 2007. [17] Hansen M A T, Hidayat B J, Mogensen K K, et al. Enzyme affinity to cell types in wheat straw(Triticum aestivum L.)before and after hydrothermal pretreatment [J]. Biotechnology for Biofuels, 2013, 6(1): 54.Doi:10.1186/1754-6834-6-54. [18] Li N, Liu H, Fu S, et al. Cell-type-dependent enzymatic hydrolysis of palm residues: chemical and surface characterization of fibers and parenchyma cells [J]. Biotechnology Letters, 2013, 35(2): 213-218.Doi:10.1007/s10529-012-1079-0. [19] Sjöström E. Wood chemistry: fundamentals and applications [M]. New York: Academic Press, 1993. [20] Buranov A U, Mazza G. Lignin in straw of herbaceous crops [J]. Industrial Crops and Products, 2008, 28(3): 237-259.Doi:10.1016/j.inlcrop2008.03.008. [21] Jin Z F, Katsumata K S, Lam T B T, et al. Covalent linkages between cellulose and lignin in cell walls of coniferous and nonconiferous woods [J]. Biopolymers, 2006, 83(2): 103-110.Doi:10.1002/bip.20533. [22] Ibarra D, Chávez M I, Rencoret J, et al. Lignin modification during Eucalyptus globulus kraft pulping followed by totally chlorine-free bleaching: a two-dimensional nuclear magnetic resonance, Fourier transform infrared, and pyrolysis-gas chromatography/mass spectrometry study [J]. Agric Food Chem, 2007, 55(9): 3477-3490.Doi:10.1021/jf063728. [23] Sixta H, Potthast A, Krotschek A W. Chemical pulping processes [C] // Sixta H. Handbook of Pulp. Wiley-Vch, 2006. [24] Xu N, Zhang W, Ren S. Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus [J]. Biotechnology for Biofuels, 2012, 5(1): 58.Doi:10.1186/1754-6834-5-58. [25] Min D Y, Yang C M, Shi R. The elucidation of the lignin structure effect on the cellulase-mediated saccharification by genetic engineering poplars(Populus nigra L. and Populus maximowiczii A.)[J]. Biomass and Bioenergy, 2013, 58: 52-57.Doi:10.1016/j.biombioe.2013.08.019. [26] Studer M H, DeMartini J D, Davis M F, et al. Lignin content in natural Populus variants affects sugar release [J]. Proceedings of the National Academy of Science, 2011, 108(15): 6300-6305.Doi:10.1073/pnas/009252108. |